Supplementary Information for

An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: A mechanistic study

Ning Lia, Yanding Lia,b, Chang Geun Yooa,c, Xiaohui Yanga,d, Xuliang Lina,e, John Ralpha,b, and Xuejun Pana,*

a. Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
b. Department of Biochemistry, University of Wisconsin-Madison, WI, 53706, USA
c. BioEnergy Science Center and Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
d. Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
e. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 511400, China

* Corresponding Author

Tel.: +1-608-2624951; Fax: +1-608-2621228; E-mail: xpan@wisc.edu
List of Figures and Tables

Figure S1. The aromatic regions of 2D 1H–13C correlation (HSQC) spectra of the ball-milled plant cell walls dispersed in DMSO-d_6/pyridine-d_5 (A: aspen, C: eucalyptus, E: Douglas fir, and G: corn stover) and the lignins isolated by acidic lithium bromide trihydrate treatment in DMSO-d_6 (D: eucalyptus and F: Douglas fir) and in DMSO-d_6/pyridine-d_5 (B: aspen and H: corn stover). Correlation signals are categorized and color-coded by the type of aromatic units. (S, syringyl; G, guaiacyl; H, p-hydroxyphenyl; pCA, p-coumarate; FA, ferulate; pBA, p-hydroxybenzoate; T, tricin).

Figure S2. Reverse-phase HPLC analysis of the catalytic cleavage of the β–O–4-aryl ether bond of model GG in LiBr trihydrate without acid (A) and with 10 mM HCl (B) for 60 min. Note: HK monomer was not quantitatively analyzed due to its poor stability.

Figure S3. GC-MS identification of the low molecular weight products of GG reaction in NLBTH (A) and ALBTH (B). Reaction conditions: A, 100 °C for 240 min without acid; B, 100 °C for 20 min with 10 mM HCl.

Figure S4. GPC chromatograms of the GG condensation products in the NLBTH (top) and ALBTH (middle). Note: The samples after NMR analysis were precipitated into acidic water for GPC analysis.

Figure S5. HSQC-TOCSY NMR spectra of GG reaction products in LiBr trihydrate reaction at 100 °C with 10 mM HCl for 10 min (A) and without acid (B) for 240 min.

Figure S6. The detailed reaction pathways of the proposed reactions.

Figure S7. The condensation between monomeric models. A. Reaction of TMBA in NLBTH at 100 °C for 30 min; B. Reaction of TMBA with excess GA in ALBTH at 100 °C for 30 min; and C. Reaction of TMBA with excess CS in ALBTH at 100 °C for 30 min.

Table S1. Lignin (Klason) content and ALBTH lignin yield of different biomass

Table S2. Hydrogenolysis of ALBTH and Klason lignins isolated from poplar and native lignin in poplar
Figure S1. The aromatic regions of 2D 1H–13C correlation (HSQC) spectra of the ball-milled plant cell walls dispersed in DMSO-d_6/pyridine-d_5 (A: aspen, C: eucalyptus, E: Douglas fir, and G: corn stover) and the lignins isolated by acidic lithium bromide trihydrate treatment in DMSO-d_6 (D: eucalyptus and F: Douglas fir) and in DMSO-d_6/pyridine-d_5 (B: aspen and H: corn stover). Correlation signals are categorized and color-coded by the type of aromatic units. (S, syringyl; G, guaiacyl; F, ferulate; Tr, sinapate; pCo, p-coumarate; pHy, p-hydroxybenzoate; pHyp, p-hydroxyphenyl; GpK, guaiacyl (Hibbert's ketone); SpK, syringyl (Hibbert's ketone).)
guaiacyl; **H**, *p*-hydroxyphenyl; **pCA**, *p*-coumarate; **FA**, ferulate; **pBA**, *p*-hydroxybenzoate; **T**, tricin

Figure S2. Reverse-phase HPLC analysis of the catalytic cleavage of the β–O–4-aryl ether bond of model **GG** in LiBr trihydrate without acid (A) and with 10 mM HCl (B) for 60 min. Note: **HK** monomer was not quantitatively analyzed due to its poor stability.
Figure S3. GC-MS identification of the low molecular weight products of GG reaction in NLBTH (A) and ALBTH (B). Reaction conditions: A, 100 °C for 240 min without acid; B, 100 °C for 20 min with 10 mM HCl.
Figure S4. GPC chromatograms of the GG condensation products in the NLBTH (top) and ALBTH (middle). Note: The samples after NMR analysis were precipitated into acidic water for GPC analysis.
Figure S5. HSQC-TOCSY NMR spectra of GG reaction products in LiBr trihydrate at 100 °C with 10 mM HCl for 10 min (A) and without acid (B) for 240 min.
Figure S6. The detailed reaction pathways of the proposed reactions.
Figure S7. The condensation between monomeric models. A. Reaction of TMBA in NLBTH at 100 °C for 30 min; B. Reaction of TMBA with excess GA in ALBTH at 100 °C for 30 min; and C. Reaction of TMBA with excess CS in ALBTH at 100 °C for 30 min.
Table S1. Lignin (Klason) contents and ALBTH lignin yields of different biomass

<table>
<thead>
<tr>
<th>Biomass</th>
<th>Klason lignin (% on biomass)</th>
<th>ALBTH lignin yield (% on biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 min</td>
<td>120 min</td>
</tr>
<tr>
<td>Poplar</td>
<td>22.2±0.4</td>
<td>20.7±0.2</td>
</tr>
<tr>
<td>Aspen</td>
<td>22.0±0.0</td>
<td>20.5±0.2</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>28.4±0.4</td>
<td>26.1±0.0</td>
</tr>
<tr>
<td>Douglas fir</td>
<td>25.9±0.0</td>
<td>24.0±0.2</td>
</tr>
<tr>
<td>Corn stover</td>
<td>12.8±0.1</td>
<td>13.8±0.1</td>
</tr>
<tr>
<td>Switchgrass</td>
<td>17.5±0.2</td>
<td>17.1±0.1</td>
</tr>
</tbody>
</table>

Note: The ALBTH reactions were conducted at 110 °C in 60% LiBr with 40 mM HCl.

Table S2. Hydrogenolysis of ALBTH and Klason lignins isolated from poplar and native lignin in poplar

<table>
<thead>
<tr>
<th></th>
<th>ALBTH lignin</th>
<th>Klason lignin</th>
<th>Raw poplar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignin oil yield (%)</td>
<td>96.0</td>
<td>29.6</td>
<td>93.1⁴</td>
</tr>
<tr>
<td>Insoluble residue yield (%)</td>
<td>4.3</td>
<td>63.7</td>
<td>63.3</td>
</tr>
</tbody>
</table>

Note: ⁴. Lignin oil yield from raw poplar was calculated based on the lignin content in poplar (20.7%, by the ALBTH method). Hydrogenolysis conditions: ALBTH and Klason lignins (0.20 g each) from poplar and poplar powder (0.95 g, containing ~0.20 g lignin) were hydrogenolyzed using a Pd/C catalyst (0.04 g) in methanol (25 mL) with 40 bar H₂ at 220 °C for 6 h.