Supporting Information

A greener borrowing hydrogen methodology: palladium-catalyzed dehydrative N-benzylation of 2-aminopyridines in water

Hidemasa Hikawa,* Hirokazu Imamura, Shoko Kikkawa, and Isao Azumaya*

Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
hidemasa.hikawa@phar.toho-u.ac.jp and isao.azumaya@phar.toho-u.ac.jp

1. Table of contents

2. Characterization of all compounds

3. Table S1, Entry 1

4. Scheme 3S. Crossover experiment.

5. Scheme 4S. Kinetic isotope effects.

6. Scheme 6S. Control experiments (B).

7. Scheme 6S. Control experiments (C).

8. Copies of 1H and 13C NMR spectra of all compounds

S1
General procedure: A mixture of aminopyridines 1 (1 mmol), palladium(II) acetate (12 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol) and benzyl alcohol 2 (5-10 mmol) in H$_2$O (4 mL) was heated for 16 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO$_4$ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc) to give desired product 3.

N-Benzylpyridin-2-amine 3a

Yield 165 mg (90%) as a white solid; mp 90-91 °C; IR (KBr) (cm$^{-1}$) 3226, 3029, 1600, 1575; 1H NMR (400 MHz, CDCl$_3$): δ 4.50 (d, J=5.7 Hz, 2H), 4.95 (brs, 1H), 6.36 (dt, J=8.5, 0.9 Hz, 1H), 6.58 (ddd, J=7.1, 5.0, 0.9 Hz, 1H), 7.23-7.36 (m, 4H), 7.39 (dd, J=8.7, 7.1, 1.8 Hz, 1H), 8.09 (ddd, J=5.0, 1.8, 0.9 Hz, 2H); 13C-NMR (100 MHz, CDCl$_3$) δ: 46.3, 106.8, 113.1, 127.2, 127.4, 128.6, 137.5, 139.2, 148.2, 158.6; MS (FAB): m/z 185 [M+H]$^+$.

N-Benzyl-5-methylpyridin-2-amine 3b

Yield 158 mg (80%) as a pale yellow solid; mp 105-107 °C; IR (KBr) (cm$^{-1}$) 3234, 3027, 1610, 1535; 1H-NMR (400 MHz, CDCl$_3$) δ 2.17 (s, 3H), 4.47 (d, J=5.5 Hz, 2H), 4.77 (brs, 1H), 6.31 (d, J=8.2 Hz, 1H), 7.20-7.29 (m, 2H), 7.29-7.39 (m, 4H), 7.92 (d, J=2.3 Hz, 1H); 13C-NMR (100 MHz, CDCl$_3$) δ: 46.3, 106.8, 113.1, 127.2, 127.4, 128.6, 138.5, 139.4, 147.7, 156.9; MS (FAB): m/z 199 [M+H]$^+$.

N-Benzyl-3-methylpyridin-2-amine 3c

Yield 163 mg (82%) as a colorless oil; IR (KBr) (cm$^{-1}$) 3443, 1601; 1H-NMR (400 MHz, CDCl$_3$) δ: 2.09 (s, 3H), 4.35 (brs, 1H), 4.69 (d, J=5.5 Hz, 2H), 6.56 (dd, J=6.9, 5.0 Hz 1H), 7.22-7.26 (m, 1H), 7.28 (tt, J=6.9, 1.8 Hz 1H), 7.32-7.42 (m, 3H), 8.05 (dd, J=4.8, 1.4 Hz 1H); 13C-NMR (100 MHz, CDCl$_3$) δ: 46.3, 106.4, 121.9, 127.1, 127.4, 128.6, 138.5, 139.4, 147.7, 156.9; MS (FAB): m/z 199 [M+H]$^+$.

N-Benzyl-5-fluoropyridin-2-amine 3d

Yield 113 mg (56%) as a white solid; mp 95-97 °C; IR (KBr) (cm$^{-1}$) 3239, 3031, 1618, 1585; 1H-NMR (400 MHz, CDCl$_3$) δ: 4.47 (d, J=6.0 Hz 2H), 4.80 (brs, 1H), 6.33 (dd, J=9.1, 3.2 Hz 1H), 7.18 (d, J=9.2, 7.8, 2.8 Hz 1H), 7.24-7.38 (m, 5H), 7.97 (d, J=2.8 Hz 1H); 13C-NMR (100 MHz, CDCl$_3$) δ: 46.8, 107.1 (d, J_{CF}=3.8 Hz), 125.2 (d, J_{CF}=21.1 Hz), 127.3, 127.4, 128.7, 134.8 (d, J_{CF}=24.9 Hz), 139.0, 153.5 (d, J_{CF}=242 Hz), 155.3; MS (FAB): m/z 203 [M+H]$^+$.

Ethyl 2-(benzylamino)nicotinate 3e

Yield 113 mg (56%) as a white solid; mp 95-97 °C; IR (KBr) (cm$^{-1}$) 3239, 3031, 1618, 1585; 1H-NMR (400 MHz, CDCl$_3$) δ: 4.47 (d, J=6.0 Hz 2H), 4.80 (brs, 1H), 6.33 (dd, J=9.1, 3.2 Hz 1H), 7.18 (d, J=9.2, 7.8, 2.8 Hz 1H), 7.24-7.38 (m, 5H), 7.97 (d, J=2.8 Hz 1H); 13C-NMR (100 MHz, CDCl$_3$) δ: 46.8, 107.1 (d, J_{CF}=3.8 Hz), 125.2 (d, J_{CF}=21.1 Hz), 127.3, 127.4, 128.7, 134.8 (d, J_{CF}=24.9 Hz), 139.0, 153.5 (d, J_{CF}=242 Hz), 155.3; MS (FAB): m/z 203 [M+H]$^+$.
Yield 213 mg (83%) as a colorless oil; IR (KBr) (cm\(^{-1}\)) 3367, 1686, 1594; \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.37 (t, \(J\) = 6.9 Hz, 3H), 4.31 (q, \(J\) = 7.3 Hz, 2H), 4.76 (d, \(J\) = 5.5 Hz, 2H), 6.55 (dd, \(J\) = 7.8, 4.6 Hz, 1H), 7.22-7.28 (m, 1H), 7.30-7.40 (m, 3H), 8.15 (dd, \(J\) = 7.8, 1.8 Hz, 1H), 8.29 (dd, \(J\) = 4.6, 1.8 Hz, 1H), 8.32 (brs, 1H); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)) \(\delta\) 14.4, 45.0, 60.9, 106.3, 111.3, 127.1, 127.6, 128.7, 139.7, 140.0, 153.7, 158.6, 167.6; MS (FAB): \(m/z\) 257 \([\text{M+H}]^+\).

Methyl 6-(benzylamino)nicotinate 3f

Yield 208 mg (86%) as a white solid; mp 147-149 \(^\circ\)C; IR (KBr) (cm\(^{-1}\)) 3222, 1706, 1601; \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.87 (s, 3H), 4.58 (d, \(J\) = 6.0 Hz, 2H), 5.41 (brs, 1H), 6.36 (d, \(J\) = 8.7 Hz, 1H), 7.27-7.38 (m, 5H), 7.99 (d, \(J\) = 8.7, 2.3 Hz, 1H), 8.76 (d, \(J\) = 1.8 Hz, 1H); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)) \(\delta\) 46.1, 51.7, 105.7, 115.5, 127.4, 127.6, 128.8, 138.1, 138.6, 151.5, 160.8, 166.4; MS (FAB): \(m/z\) 243 \([\text{M+H}]^+\); Anal. Calcd for C\(_{14}\)H\(_{14}\)N\(_2\)O\(_2\): C, 69.41; H, 5.82; N, 11.56. Found: C, 69.41; H, 5.93; N, 11.45.

N-Benzyl-5-(trifluoromethyl)pyridin-2-amine 3g

Scale-up experiment (see Scheme 8): A mixture of 5-(trifluoromethyl)pyridin-2-amine (1b) (1.13 g, 7 mmol), Pd(OAc)\(_2\) (78.6 mg, 0.35 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 255.0 mg, 0.7 mmol) and benzyl alcohol (2a) (3.4 mL, 35 mmol) in H\(_2\)O (28 mL) was heated at 100 \(^\circ\)C for 16 h under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO\(_4\) and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc) to give desired product 3g (1.27 g, 5.0 mmol, 72%) as a white solid; mp 148-150 \(^\circ\)C; IR (KBr) (cm\(^{-1}\)) 3233, 1616; \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.57 (d, \(J\) = 6.0 Hz, 2H), 5.20 (brs, 1H), 6.40 (d, \(J\) = 8.7 Hz, 1H), 7.25-7.40 (m, 5H), 7.58 (d, \(J\) = 8.7, 2.8 Hz, 1H), 8.36 (s, 1H); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)) \(\delta\) 46.1, 106.1, 115.8 (q, \(J\)\(_{CF}\) = 32.6 Hz), 124.6 (q, \(J\)\(_{CF}\) = 270.3 Hz), 127.4, 127.6, 128.8, 138.1, 138.6, 151.5, 160.8, 166.4; MS (FAB): \(m/z\) 253 \([\text{M+H}]^+\); Anal. Calcd for C\(_{14}\)H\(_{14}\)N\(_2\): C, 69.41; H, 5.82; N, 11.56. Found: C, 69.41; H, 5.93; N, 11.45.

6-(Benzylamino)nicotinonitrile 3h

Yield 178 mg (85%) as a white solid; mp 118-120 \(^\circ\)C; IR (KBr) (cm\(^{-1}\)) 3227, 2219, 1604; \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.56 (d, \(J\) = 5.5 Hz, 2H), 5.63 (brs, 1H), 6.38 (d, \(J\) = 9.2 Hz, 1H), 7.27-7.39 (m, 4H), 7.56 (dd, \(J\) = 8.7, 2.3 Hz, 1H), 8.29 (d, \(J\) = 1.8 Hz, 1H); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)) \(\delta\) 46.0, 97.3, 106.6, 118.5, 127.5, 127.8, 128.9, 137.6, 139.8, 153.2, 159.7; MS (FAB): \(m/z\) 210 \([\text{M+H}]^+\).

6-(Benzylamino)nicotinamide 3i

Yield 205 mg (90%) as a white solid; mp 168-170 \(^\circ\)C; IR (KBr) (cm\(^{-1}\)) 3411, 3178, 1648, 1603; \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 4.53 (d, \(J\) = 6.0 Hz, 2H), 6.51 (d, \(J\) = 8.7 Hz, 1H), 7.06 (brs, 1H), 7.18-7.27 (m, 1H), 7.28-7.35 (m, 4H), 7.60 (t, \(J\) = 6.0 Hz, 1H), 7.67 (brs, 1H), 7.82 (dd, \(J\) = 8.7, 2.3 Hz, 1H), 8.52 (d,
$J=2.3 \text{ Hz, 1H)}$; 13C-NMR (100 MHz, DMSO-d_6) δ 44.5, 107.6, 118.4, 127.2, 127.8, 128.8, 136.6, 140.6, 149.1, 160.6, 167.5; MS (FAB): m/z 228 [M+H]$^+$.

N-Benzylypyridin-3-amine 3j
Yield 166 mg (90%) as a pale brow solid; mp 87-89 °C; IR (KBr) (cm$^{-1}$) 3263, 1591; 1H-NMR (400 MHz, CDCl$_3$) δ 4.14 (brs, 1H), 4.34 (d, $J=5.0$ Hz, 2H), 6.87 (dd, $J=8.2, 1.4$ Hz, 1H), 7.06 (dd, $J=3.2$ Hz, 1H), 7.26-7.40 (m, 5H), 7.97 (dd, $J=4.6, 1.4$ Hz, 1H), 8.01 (d, $J=3.2$ Hz, 1H); 13C-NMR (100 MHz, CDCl$_3$) δ 47.9, 118.6, 123.8, 127.5, 127.6, 128.9, 136.3, 138.6, 139.0, 144.1; MS (FAB): m/z 185 [M+H]$^+$.

N-Benzylypyrimidin-2-amine 3k
Yield 130 mg (70%) as a white solid; mp 78-80 °C; IR (KBr) (cm$^{-1}$) 3236, 1600; 1H-NMR (400 MHz, CDCl$_3$) δ 4.64 (d, $J=5.5$ Hz, 2H), 5.84 (brs, 1H), 6.52 (t, $J=4.6$ Hz, 1H), 7.24-7.38 (m, 5H), 8.22 (brd, $J=4.1$ Hz, 1H); 13C-NMR (100 MHz, CDCl$_3$) δ 45.5, 110.9, 127.3, 127.6, 128.7, 139.2, 158.2, 162.4; MS (FAB): m/z 186 [M+H]$^+$.

N-(4-Methylbenzyl)pyridin-2-amine 3l
Yield 149 mg (75%) as a white solid; mp 72-74 °C; IR (KBr) (cm$^{-1}$) 3235, 1609; 1H-NMR (400 MHz, CDCl$_3$) δ 2.34 (s, 3H), 4.45 (d, $J=5.5$ Hz, 2H), 4.83 (brs, 1H), 6.37 (d, $J=8.9$ Hz, 1H), 6.58 (dd, $J=7.3, 5.0, 0.7$ Hz, 1H), 7.15 (d, $J=7.8$ Hz, 2H), 7.25 (d, $J=8.2$ Hz, 2H), 7.39 (ddd, $J=8.7, 7.3, 1.8$ Hz, 1H), 8.10 (dd, $J=5.0, 1.4$ Hz, 1H); 13C-NMR (100 MHz, CDCl$_3$) δ 21.1, 46.1, 106.7, 113.0, 127.4, 129.3, 136.1, 136.9, 137.4, 148.2, 158.7; MS (FAB): m/z 199 [M+H]$^+$.

N-(3-Methylbenzyl)pyridin-2-amine 3m
Yield 159 mg (80%) as a white solid; mp 95-97 °C; IR (KBr) (cm$^{-1}$) 3240, 1608; 1H-NMR (400 MHz, CDCl$_3$) δ 2.37 (s, 3H), 4.47 (d, $J=5.5$ Hz, 2H), 4.64 (brs, 1H), 6.38 (dt, $J=8.2, 0.9$ Hz, 1H), 6.60 (ddd, $J=6.9, 5.0, 0.9$ Hz, 1H), 7.15-7.23 (m, 3H), 7.32 (d, $J=6.9$ Hz, 1H), 7.41 (ddd, $J=9.2, 7.3, 1.8$ Hz, 1H), 8.11 (ddd, $J=5.0, 1.8, 0.9$ Hz, 1H); 13C-NMR (100 MHz, CDCl$_3$) δ 19.1, 44.5, 106.9, 113.1, 126.2, 127.5, 128.1, 130.5, 136.4, 136.9, 137.5, 148.3, 158.7; MS (FAB): m/z 199 [M+H]$^+$.

N-(2-Methylbenzyl)pyridin-2-amine 3n
Yield 159 mg (80%) as a white solid; mp 74-76 °C; IR (KBr) (cm$^{-1}$) 3223, 1601; 1H-NMR (400 MHz, CDCl$_3$) δ 2.34 (s, 3H), 4.46 (d, $J=6.0$ Hz, 2H), 4.84 (brs, 1H), 6.37 (d, $J=8.2$ Hz, 1H), 6.59 (dd, $J=7.3, 5.5$ Hz, 1H), 7.08 (d, $J=7.3$ Hz, 1H), 7.13-7.20 (m, 2H), 7.23 (t, $J=7.3$ Hz, 1H), 7.40 (dd, $J=6.9, 1.8$ Hz, 1H), 8.11 (dt, $J=5.0, 0.9$ Hz, 1H); 13C-NMR (100 MHz, CDCl$_3$) δ 21.4, 46.3, 106.7, 113.1, 124.4, 128.0, 128.1, 128.5, 137.4, 138.3, 139.1, 148.2, 158.7; MS (FAB): m/z 199 [M+H]$^+$.

S4
N-(3-Methylbenzyl)-4-(trifluoromethyl)aniline 3o

Yield 178 mg (67%) as a white solid; mp 110-112 °C; IR (KBr) (cm⁻¹) 3245, 1620; H-NMR (400 MHz, CDCl₃) δ 2.35 (s, 2H), 4.51 (d, J=5.5 Hz, 2H), 5.27 (brs, 1H), 6.39 (d, J=9.2 Hz, 1H), 7.08-7.18 (m, 3H), 7.24 (t, J=7.8 Hz, 1H), 7.57 (dd, J=8.7, 2.3 Hz, 1H), 8.33 (s, 1H); C-NMR (100 MHz, CDCl₃) δ 21.4, 46.1, 105.9, 115.6 (q, J_CF=33.6 Hz), 124.5, 124.6 (q, J_CF=270.3 Hz), 128.2, 128.4, 128.7, 134.5 (q, J_CF=2.9 Hz), 138.1, 138.6, 146.1 (q, J_CF=4.8 Hz), 160.3; MS (FAB): m/z 267 [M+H]+; HRMS-FAB: m/z (M⁺) calcd for C₁₄H₁₃F₃N₂ 267.1109, found 267.1109.

N-(4-Methoxybenzyl)pyridin-2-amine 3p

Yield 176 mg (82%) as a white solid; mp 118-120 °C; IR (KBr) (cm⁻¹) 3234, 1604; H-NMR (400 MHz, CDCl₃) δ 3.80 (s, 3H), 4.43 (d, J=6.0 Hz, 2H), 4.78 (brs, 1H), 6.37 (d, J=8.2 Hz, 1H), 6.59 (ddd, J=7.3, 5.0, 0.9 Hz, 1H), 6.88 (d, J=8.7 Hz, 2H), 7.29 (d, J=8.7 Hz, 2H), 7.40 (d, J=8.7, 6.9, 1.8 Hz, 1H), 8.11 (dd, J=5.0, 1.4 Hz, 1H); C-NMR (100 MHz, CDCl₃) δ 45.8, 55.3, 106.8, 113.1, 114.0, 128.7, 131.1, 137.4, 148.2, 158.6, 158.8; MS (FAB): m/z 215 [M+H]+.

N-(4-Butoxybenzyl)pyridin-2-amine 3q

Yield 208 mg (81%) as a white solid; mp 83-85 °C; IR (KBr) (cm⁻¹) 3229, 1606; H-NMR (400 MHz, CDCl₃) δ 0.97 (t, J=7.3 Hz, 1H), 1.48 (sext, J=7.8 Hz, 1H), 1.76 (quin, J=7.3 Hz, 1H), 3.95 (t, J=6.9 Hz, 2H), 4.42 (d, J=5.5 Hz, 2H), 4.77 (brs, 1H), 6.37 (d, J=8.7 Hz, 1H), 6.58 (dd, J=7.3, 5.0 Hz, 1H), 6.86 (d, J=8.0 Hz, 2H), 7.26 (d, J=8.0 Hz, 2H), 7.40 (dd, J=6.9, 1.8 Hz, 1H), 8.10 (dt, J=5.0, 0.9 Hz, 1H); C-NMR (100 MHz, CDCl₃) δ 13.9, 19.3, 31.3, 45.9, 67.7, 106.8, 113.1, 114.6, 128.7, 130.9, 137.4, 148.2, 158.4, 158.6; MS (FAB): m/z 257 [M+H]+; Anal. Calcd for C₁₆H₂₀N₂O: C, 74.97; H, 7.86; N, 10.93. Found: C, 74.73; H, 7.90; N, 10.79.

N-[1-(4-Methoxyphenyl)ethyl]pyridin-2-amine 3r

Yield 139 mg (61%) as a white solid; mp 89-91 °C; IR (KBr) (cm⁻¹) 3263, 2978, 1610; H-NMR (400 MHz, CDCl₃) δ 1.53 (d, J=6.9 Hz, 3H), 3.79 (s, 3H), 4.68 (quint, J=6.6 Hz, 1H), 4.88 (brd, J=5.5 Hz, 1H), 6.19 (d, J=8.7 Hz, 1H), 6.54 (dd, J=6.9, 5.0 Hz, 1H), 6.86 (d, J=8.7 Hz, 2H), 7.29 (d, J=8.7 Hz, 2H), 7.32 (dd, J=6.4, 2.3 Hz, 1H); C-NMR (100 MHz, CDCl₃) δ 24.4, 51.3, 55.3, 106.7, 113.0, 114.0, 126.9, 136.7, 137.4, 148.2, 158.1, 158.6; MS (FAB): m/z 229 [M+H]+.

N-(Naphthalen-2-ylmethyl)pyridin-2-amine 3s

Yield 176 mg (75%) as a white solid; mp 110-112 °C; IR (KBr) (cm⁻¹) 3228, 1600; H-NMR (400 MHz, CDCl₃) δ 4.67 (d, J=5.8 Hz, 2H), 4.98 (brs, 1H), 6.40 (d, J=8.2 Hz, 1H), 6.60 (dd, J=6.9, 5.0, 0.9 Hz, S5
1H), 7.36-7.52 (m, 3H), 7.76-7.86 (m, 4H), 8.13 (dd, J=5.0, 1.8, 0.9 Hz, 1H); 13C-NMR (100 MHz, CDCl3) δ 46.5, 106.8, 113.3, 125.7, 125.8, 126.2, 127.7, 128.4, 132.7, 133.4, 136.7, 137.5, 148.3, 158.6; MS (FAB): m/z 235 [M+H]+.

References
A mixture of 2-aminopyridine 1a (94 mg, 1 mmol), Pd(OAc)$_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), and benzyl alcohol 2a (216 mg, 2 mmol), in H$_2$O (4 mL) was heated at 120 °C for 16 h in a sealed tube under air. After the reaction mixture was cooled, 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) was added to the reaction mixture, which was extracted with AcOEt. The organic layer was concentrated in vacuo. The residue was analyzed by 1H NMR spectroscopy. The conversion yield was calculated by integration.

Conversion yield was calculated by integration.

Table S1, Entry 1 (The yield was determined by 1H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.)

<table>
<thead>
<tr>
<th>Signal δ</th>
<th>desired 3a</th>
<th>1,3,5-trimethoxybenzene, internal standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.34 (Ar-H)</td>
<td>6.08 (Ar-H)</td>
<td></td>
</tr>
<tr>
<td>Integral value</td>
<td>0.72 (1H)</td>
<td>3.00 (3H)</td>
</tr>
<tr>
<td>Calculated ratio</td>
<td>72% from 1a</td>
<td>1 mmol</td>
</tr>
</tbody>
</table>
Scheme 3S. Crossover experiment.

A mixture of 1b (162 mg, 1 mmol), Pd(OAc)$_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), benzyl-α,α-d$_2$ alcohol 2a-d$_2$ (5 mmol), and 3-methylbenzyl alcohol 2c (5 mmol) in H$_2$O (4 mL) was heated at 120 °C for 16 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO$_4$ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc) to give H/D scrambling products N-benzyl-5-(trifluoromethyl)pyridin-2-amine (3g-d and 3g-d$_2$ mixture) and N-(3-methylbenzyl)-5-(trifluoromethyl)pyridin-2-amine (3o and 3o-d mixture) in 40% and 35% isolated yields, respectively.

N-(3-Methylbenzyl)-5-(trifluoromethyl)pyridin-2-amine (3o and 3o-d mixture)

FAB-MS: m/z [M+H]$^+$ 3o, 267, 3o-d, 268.
Scheme 4S. Kinetic isotope effects.

A mixture of 2-aminopyridine 1a (94 mg, 1 mmol), Pd(OAc)$_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol), benzyl alcohol 2a (108 mg, 1 mmol), and 2a-d$_7$ (115 mg, 1 mmol) in H$_2$O (2 mL) was heated at 120 °C for 16 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO$_4$ and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc). The product was analyzed by 1H-NMR spectroscopy.

<table>
<thead>
<tr>
<th>Signal δ</th>
<th>7.18-7.40 (Ph-5H and Py-1H)</th>
<th>6.43-6.52 (Py-2H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral value</td>
<td>4.67</td>
<td>2.00</td>
</tr>
</tbody>
</table>

$4.67 - 1.00 = 3.67$ (Ph-5H), $5.00 - 3.67 = 1.33$ (Ph-5D)
KIE = $3.67/1.33 = 2.8$

![Authentic sample](image)
Hammett study

A mixture of 2-aminopyridine 1a (94 mg, 1 mmol), 1X (1 mmol), Pd(OAc)$_2$ (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulphonate (TPPMS, 36 mg, 0.1 mmol), and benzyl alcohol 2a (310 µL, 2 mmol), in H$_2$O (4 mL) was heated at 120 °C for 16 h in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was concentrated in vacuo. The residue was analyzed by 1H-NMR spectroscopy.

<table>
<thead>
<tr>
<th>R</th>
<th>σ</th>
<th>log(k_r/k_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>-0.17</td>
<td>0.176</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0.06</td>
<td>-0.018</td>
</tr>
<tr>
<td>COOMe</td>
<td>0.45</td>
<td>-0.182</td>
</tr>
<tr>
<td>CN</td>
<td>0.66</td>
<td>-0.44</td>
</tr>
</tbody>
</table>

$R = $ Me: log(k_r/k_a) = log(1.50/1.00) = 0.176
Scheme 6(B). Control experiments.

A mixture of benzyl alcohol 2a (541 mg, 5 mmol), palladium(II) acetate (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol) in H2O (4 mL) was heated for 2 h in sealed tube. After the reaction mixture was cooled, 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) was added to the reaction mixture, which was extracted with CDCl3 (8 mL), then the organic layer was analyzed by 1H-NMR spectroscopy.

Conversion yield was calculated by integration.

<table>
<thead>
<tr>
<th>Signal (δ)</th>
<th>Ph-CHO 4a (1H)</th>
<th>Ph-Me 5a (3H)</th>
<th>1,3,5-trimethoxybenzene, internal standard (3H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral value</td>
<td>2.1 (1H)</td>
<td>5.67 (3H)</td>
<td>3.00 (3H)</td>
</tr>
<tr>
<td>Calculated ratio</td>
<td>42% from 2a</td>
<td>38% from 2a</td>
<td>1 mmol</td>
</tr>
</tbody>
</table>
Scheme 6(C)S. Control experiments.

A mixture of benzyl alcohol 2b (152 mg, 1 mmol), palladium(II) acetate (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol) in H₂O (4 mL) was heated for 2 h in sealed tube. After the reaction mixture was cooled, 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) was added to the reaction mixture, which was extracted with CDCl₃ (8 mL), then the organic layer was analyzed by ¹H-NMR spectroscopy. Conversion yield was calculated by integration.

<table>
<thead>
<tr>
<th></th>
<th>4b</th>
<th>5b</th>
<th>1,3,5-trimethoxybenzene, internal standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>7.94 (Ar-2H)</td>
<td>1.21 (Ar-CH₂CH₃)</td>
<td>6.09 (Ar-H)</td>
</tr>
<tr>
<td>Integral value</td>
<td>0.98 (2H)</td>
<td>0.94 (3H)</td>
<td>3.00 (3H)</td>
</tr>
<tr>
<td>Calculated ratio</td>
<td>49% from 2b</td>
<td>31% from 2b</td>
<td>1 mmol</td>
</tr>
</tbody>
</table>

A mixture of benzyl alcohol 2b (152 mg, 1 mmol), palladium(II) acetate (11 mg, 0.05 mmol), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS, 36 mg, 0.1 mmol) in H₂O (4 mL) was heated for 2 h in sealed tube. After the reaction mixture was cooled, 1,3,5-trimethoxybenzene (168 mg, 1 mmol, internal standard) was added to the reaction mixture, which was extracted with CDCl₃ (8 mL), then the organic layer was analyzed by ¹H-NMR spectroscopy. Conversion yield was calculated by integration.

<table>
<thead>
<tr>
<th></th>
<th>4b</th>
<th>5b</th>
<th>1,3,5-trimethoxybenzene, internal standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>7.94 (Ar-2H)</td>
<td>1.21 (Ar-CH₂CH₃)</td>
<td>6.09 (Ar-H)</td>
</tr>
<tr>
<td>Integral value</td>
<td>0.98 (2H)</td>
<td>0.94 (3H)</td>
<td>3.00 (3H)</td>
</tr>
<tr>
<td>Calculated ratio</td>
<td>49% from 2b</td>
<td>31% from 2b</td>
<td>1 mmol</td>
</tr>
</tbody>
</table>
X: parts per Million: Carbon13

S40
S49