Supporting Information

Regioselective deuteration of alcohols in D\textsubscript{2}O catalysed by homogeneous manganese and iron pincer complexes

Sayan Kar, Alain Goeppert, Raktim Sen, Jotheeswari Kothandaraman, and G. K. Surya Prakash*

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States.

Email: gprakash@usc.edu

Table of Contents

1. Materials and methods \hspace{1cm} S2
2. Standard procedure for deuteration reactions \hspace{1cm} S2
3. Selected spectral data for deuteration reactions \hspace{1cm} S3
 3.1. Deuteration of primary alcohols with manganese complex \textbf{C-1} \hspace{1cm} S3
 3.2. Deuteration of primary alcohols with iron complex \textbf{C-3} \hspace{1cm} S8
 3.3. Deuteration of secondary alcohols \hspace{1cm} S11
4. Control experiments \hspace{1cm} S12
5. EI-MS analysis of benzyl alcohol before and after deuteration \hspace{1cm} S15
6. Recycling studies \hspace{1cm} S17
7. References \hspace{1cm} S18
1. Materials and methods

All deuteration experiments were carried out under an inert atmosphere (with N_2 or Ar). Complexes MnBrPNP\(^{iPr}\)(CO)\(_2\) (C-1) MnBrPNP\(^{Cy}\)(CO)\(_2\) (C-2), and FeHBrPNP\(^{iPr}\)(CO) (C-3) were prepared by previously reported methods.\(^1\)\(^2\) All catalysts were weighed inside an argon filled glove box. Alcohols 1-21 and NaOH were bought from commercial vendors and used without further purification. D\(_2\)O (CIL, D-99.5%) was sparged with N\(_2\) for 1 h prior to use. \(^1\)H, \(^2\)H, \(^31\)P and \(^{13}\)C NMR spectra were recorded on 400 MHz or 500 MHz Varian NMR spectrometers. \(^1\)H and \(^{13}\)C NMR chemical shifts were determined relative to the residual solvent signals (D\(_2\)O, CDCl\(_3\)). The \(^2\)H NMR chemical shift were determined based on external CDCl\(_3\) reference. Mass spectral data were recorded on a Bruker 300-MS TQ Mass Spectrometer at 70 eV for EI.

![Catalytic complexes screened in this study](#)

2. Standard procedure for deuteration reaction

In a J. Young NMR tube (total volume \(\sim\)2.5 mL), catalyst C-1/C-2/C-3 was weighed inside an argon glove box, followed by the addition of pre-dissolved NaOH (5-200 mol% with respect to alcohol) in 0.4 mL D\(_2\)O, and alcohol (0.25-0.5 mmol) under nitrogen atmosphere (10 µL 1,4-dioxane was additionally added in case of ethanol (2), methanol (3), ethylene glycol (13), and isopropanol (20) as an internal standard). The NMR tube was then sealed and a proton NMR spectrum was recorded. Subsequently, the NMR tube was placed in a pre-heated oil bath (100 °C - 140 °C) for a given amount of time (12-60 h). After the reaction, the NMR tube was cooled to room temperature; after which the \(^1\)H and \(^{13}\)C NMR spectra were recorded. The amount of deuteration was calculated from the \(^1\)H (and \(^2\)H, whenever necessary) NMR spectra based on integral ratios of nondeuterable peaks (not \(\alpha/\beta\))/ internal standard peak with deuterated peaks. The deuterated
alcohols were isolated through extraction with CDCl$_3$. Maximum theoretical deuteration achievable were calculated based on the numbers of exchangeable proton and deuterium atoms present in the system. For example, for Table 1, entry 1, total exchangeable H atoms = [0.5x5 (from n-BuOH) + 1.0 (from NaOH)] mmol = 3.5 mmol. Total exchangeable D atom = [400*1.11*2/20] (from D$_2$O; d= 1.11; MW = 20) = 44.4 mmol. So, the theoretical maximum deuteration = [44.4/(44.4+3.5)]*100% = 93%.

3. Selected spectral data for deuteration reactions

3.1. Deuteration of primary alcohols with manganese complex C-1

Figure S2. 1H spectra of deuteration of 1 before (A) and after (B) reaction and 2H spectra of deuterated n-butanol (C). Reaction conditions: 1 (0.5 mmol), C-1 (1mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.
Figure S3. 13C spectra of deuterated (α, β) n-butanol (1) in D$_2$O. Reaction conditions: 1 (0.5 mmol), C-1 (1mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.

Figure S4. 1H spectra of 4 before (A) and after (B) reaction. Reaction conditions: 4 (0.5 mmol), C-1 (1 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.
Figure S5. 1H spectra of deuteration of 5 before (A) and after (B) reaction. Reaction conditions: 5 (0.5 mmol), C-1 (0.5 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.

Figure S6. 1H spectra of deuteration of 6 before (A) and after (B) reaction. Reaction conditions: 6 (0.5 mmol), C-1 (0.5 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.
Figure S7. 1H spectra of 7 before (A) and after (B) reaction. Reaction conditions: 7 (0.5 mmol), C-1 (1 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.

Figure S8. 1H spectra of 9 before (A) and after (B) reaction and 2H spectra of deuterated 9 (C). Reaction conditions: 9 (0.5 mmol), C-1 (1 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.
Figure S9. 1H spectra of 10 before (A) and after (B) reaction and 2H spectra of deuterated 10 (C).
Reaction conditions: 10 (0.5 mmol), C-1 (0.5 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.

Figure S10. 1H spectra of 12 before (A) and after (B) reaction. Reaction conditions: 12 (0.5 mmol), C-1 (0.5 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.
Figure S11. 1H spectra of 15 before (A) and after (B) reaction. Reaction conditions: 15 (0.5 mmol), C-1 (1 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 120 °C, 12 h.

3.2. Deuteration of primary alcohols with iron complex C-3

Figure S12. 1H spectra of α-deuterated 1. Reaction conditions: 1 (0.25 mmol), C-3 (2 mol%), NaOH (10 mol%), D$_2$O (0.4 mL), 100 °C, 24 h.
Figure S13. 1H spectra of α-deuterated 4. Reaction conditions: 4 (0.25 mmol), C-3 (2 mol%), NaOH (10 mol%), D$_2$O (0.4 mL), 100 °C, 24 h.

Figure S14. 1H spectra of α-deuterated 5. Reaction conditions: 5 (0.25 mmol), C-3 (2 mol%), NaOH (10 mol%), D$_2$O (0.4 mL), 100 °C, 24 h.
Figure S15. 2H spectra of α-deuterated 5. Reaction conditions: 5 (0.25 mmol), C-3 (2 mol%), NaOH (10 mol%), D$_2$O (0.4 mL), 100 °C, 24 h.

Figure S16. 1H spectra of α, β-deuterated 12. Reaction conditions: 12 (0.25 mmol), C-3 (2 mol%), NaOH (10 mol%), D$_2$O (0.4 mL), 100 °C, 24 h.
3.2. Deuteration of secondary alcohol

Figure S17. 1H spectra of 17 before (A) and after (B) reaction. Reaction conditions: 17 (0.5 mmol), C-1 (2 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 140 °C, 30 h.

Figure S18. 2H spectra of 17 after reaction. Reaction conditions: 17 (0.5 mmol), C-1 (2 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 140 °C, 30 h.
Figure S19. 1H spectra of 19 before (A) and after (B) reaction. Reaction conditions: 19 (0.5 mmol), C-1 (2 mol%), NaOH (5 mol%), D$_2$O (0.4 mL), 140 °C, 30 h.

4. Control experiments performed to understand the reaction mechanism

Observation of the active catalytic species in the reaction mixture

In a J Young NMR tube (total volume ~2.5 mL), catalyst C-1 was weighed inside an argon globe box, followed by the addition of pre-dissolved NaOH (5 mol% with respect to alcohol) in 0.4 mL D$_2$O, and n-butanol (0.5 mmol) under nitrogen atmosphere. The NMR tube was then sealed and placed in a pre-heated oil bath (120 °C). After 1 h, the NMR tube was cooled to room temperature and 0.2 mL THF was added to the reaction mixture. The resultant homogeneous solution was then analyzed by 31P NMR spectroscopy.
Figure S20. Active species detected in the reaction mixture through 31P NMR after 1 h (0.2 mL THF was added to the reaction mixture to form a homogeneous solution)

Formation of manganese deuteroxide species (C-1B)

In a 50 mL Schlenk flask, C-1 (0.05mmol) was weighed inside an argon glove box and subsequently dissolved in 5 mL of dry and degassed THF in a nitrogen atmosphere, followed by the addition of 1 mmol of t-BuOK (weighed inside an argon glove box). The formation of the manganese amido complex (C-1A) was observed as a red solution. After stirring the resulting solution for 15 minutes, the red solution was filtered through Celite, and 5 mmol D$_2$O was subsequently added to the filtrate. The solution immediately turned yellow, signifying the formation of a deuteroxide species. The solution was stirred for 30 minutes, after which the solvents were removed *in vacuo*. Benzene-d$_6$ was used as the deuterated solvent for the 31P NMR analysis of the resulting C-1B.
Figure S21. 31P spectra of manganese deuteroxide species [Mn(OD)PN$_3$P$_2$(CO)$_2$] (C-1B).

α, β deuteration of n-butanol with C-1B

Figure S22. Deuteration of 1 by manganese deuteroxy complex (C-1B) without added base, Signifying the ability of C-1B to form C-1A in the solution at 120 °C. (THF peaks suppressed)
5. EI-MS analysis of benzyl alcohol before and after deuteration

Figure S23. EI-MS spectra of benzyl alcohol
Figure S24. EI-MS spectra of α deuterated benzyl alcohol. Reaction conditions: benzyl alcohol (0.5 mmol), C-1 (0.5 mol%), NaOH (5 mol%), D₂O (0.4 mL), 120 °C, 12 h.
6. Recycling studies

Standard procedure:

In a J. Young NMR tube (total volume ~2.5 mL), catalyst C-1 (2 mol%, 0.01 mmol) was weighed inside an argon globe box, followed by the addition of pre-dissolved NaOH (5 mol% with respect to alcohol) in 0.5 mL D$_2$O, and alcohol (0.5 mmol) under nitrogen atmosphere. The NMR tube was then sealed and a proton NMR spectrum was recorded. Subsequently, the NMR tube was placed in a pre-heated oil bath (120 °C) for a given amount of time (12 h). After the reaction, the NMR tube was cooled to room temperature; after which a 1H NMR spectra was recorded. Subsequently, in a nitrogen atmosphere, 0.4 mL of degassed chloroform was added to the NMR tube. From the resulting biphasic solution, the top D$_2$O (with NaOH) layer was separated to afford a yellow solution. The catalyst was then recovered by removing the deuterated n-BuOH and CHCl$_3$ in vacuo. The recovered catalyst inside the J. Young NMR tube then recharged with fresh n-BuOH (0.5 mmol), NaOH (5 mol%) and D$_2$O (0.5 mL) for the next cycle.

![Deuteration (%)](image)

Figure S25. α and β deuteration observed in successive cycles. n-butanol (0.5 mmol), C-1 (2 mol%), NaOH (5 mol%), D$_2$O (0.5 mL), 120 °C, 12 h.
Figure S26. Image of the recovered catalyst inside the J.Young NMR tube

7. References
