Supporting Information

Vanillin-derived amines for bio-based thermosets

Anne-Sophie Mora,[a] Russell Tayouo, Bernard Boutevin,[a] Ghislain David,[a] and Sylvain Caillol,[a]*

[a] Laboratoire Ingénierie et Architectures Moléculaires (IAM), Institut Charles Gerhardt UMR 5253 – CNRS, Université Montpellier, ENSCM - 8, Rue Ecole Normale, Montpellier 34296, France
E-mail: anne-sophie.mora@enscm.fr; sylvain.caillol@enscm.fr; ghislain.david@enscm.fr; Fax: +33-467-14-72-20; Tel: +33-467-14-43-27.

Table des matières

I. Characterization data ..2
 a. Dihydroxyaminopropane of bisphenol A (4) ...2
 b. Dihydroxyaminopropane of methoxyhydroquinone (5)...2
 c. Dihydroxyaminopropane of vanillyl alcohol (6)..4
 e. Various T_g measurements of the DHAVA/DGEBA materials...6
 f. Various T_g measurements of the DHAVA/DGEBA materials...6
I. Characterization data

a. Dihydroxyaminopropane of bisphenol A (4)

Described in the literature:

IR (neat, ν, cm⁻¹): 3371–3042, 2969–2925, 2866, 1604, 1582, 1508, 1240, 1029, 830.

¹H NMR (400 MHz, CD₃OD, ppm) δ: 7.13 and 6.85 (d, 8H, H₉,); 4.07–3.92 (m, 6H, 2xO-C₆H₄, 2xCH); 2.89–2.72 (m, 4H, 2xN-CH₃), 1.62 (s, 6H, 2xCH₃).

ESMS (in MeOH, positive ions): m/z ≈ 375.2 ([M + H]⁺, calculated: 375.23). MS/MS: m/z ≈ 375.2, 357.2, 302.1, 208.0, 135.0.

Recorded during this study:

¹³C NMR (101 MHz, MeOD) and DEPT 135
b. Dihydroxyaminopropane of methoxyhydroquinone (5)

1H NMR (400 MHz, MeOD)

1C NMR (101 MHz, MeOD) and DEPT 135
c. Dihydroxyaminopropane of vanillyl alcohol (6)

1H NMR (400 MHz, MeOD)
13C NMR (101 MHz, MeOD) and DEPT 135

FTIR
d. T_g measurements of DHAMHY and DHAVA

d. [Graph showing weight loss vs. temperature for DHAMHY and DHAVA materials.]

e. Various T_g measurements of the DHAVA/DGEBA materials

e. [Graph showing DSC vs. temperature for various compositions of DHAVA/DGEBA materials.]

f. Various T_g measurements of the DHAVA/DGEBA materials

f. [Graph showing DSC vs. temperature for various compositions of DHAVA/DGEBA materials.]
g. T_g of the DHAVA materials as a function of the epoxy/amine ratio used