Supporting Information for

Hetero-bifunctional catalyst manipulates carbonyl and alkynyl reductions of conjugated alkynones in an aqueous medium

Yanchao Su, Fengwei Chang, Ronghua Jin, Rui Liu and Guohua Liu*

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.

CONTENTS

Experimental: ... S2

Figure S1. FT-IR spectra of 4 and catalyst 5. .. S3

Figure S2. Small-angle powder XRD patterns of 4 and catalyst 5. .. S3

Table S1. Optimizing reaction conditions for the 5-catalysed enantioselective cascade reactions of (4-(phenylethynyl)phenyl)ethanone. ... S4

Figure S3. The HPLC analyses for chiral products. ... S5

Figure S4. Reusability of catalyst 5 .. S25

Figure S5. Characterization of chiral products. ... S28
Experimental

1). General

All experiments, which are sensitive to moisture or air, were carried out under an Ar atmosphere using the standard Schlenk techniques. Tetraethoxysilane (TEOS), 1,4-bis(triethoxy)silyl)ethane, cetyltrimethylammonium bromide (CTAB), fluorocarbon surfactant (FC-4: \([\text{C}_3\text{F}_7\text{O(CF(CF}_3\text{)CF}_2\text{O}_2\text{CF(CF}_3\text{)}\text{CONH(CH}_2\text{)_3N}^+ (\text{C}_2\text{H}_5)_2\text{CH}_3]^- \)), 4-(2-(trimethoxysilyl)ethyl)benzene-1-sulfonyl chloride, Triethylenediamine (DABCO), 4-(methylphenylsulfonyl)-1,2-diphenylethlenediamine \(((S,S)-\text{TsDPEN})\), \((\text{MesityleneRuCl}_2)_2\) were purchased from Sigma-Aldrich Company Ltd and used as received.

2). Characterization

Ru and Pd loading amounts in the catalysts were analyzed using an inductively coupled plasma optical emission spectrometer (ICP, Varian VISTA-MPX). Fourier transform infrared (FT-IR) spectra were collected on a Nicolet Magna 550 spectrometer using KBr method. Scanning electron microscopy (SEM) images were obtained using a JEOL JSM-6380LV microscope operating at 20 kV. Transmission electron microscopy (TEM) images were performed on a JEOL JEM2010 electron microscope at an acceleration voltage of 220 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Perkin-Elmer PHI 5000C ESCA system. A 200 μm diameter spot size was scanned using a monochromatized Aluminum Ka X-ray source (1486.6.6 eV) at 40 W and 15 kV with 58.7 eV pass energies. All the binding energies were calibrated by using the contaminant carbon \((\text{C}_{1s} = 284.6 \text{ eV})\) as a reference. Nitrogen adsorption isotherms were measured at 77 K with a Quantachrome Nova 4000 analyzer. The samples were measured after being outgassed at 423 K overnight. Pore size distributions were calculated by using the BJH model. The specific surface areas \((S_{\text{BET}})\) of samples were determined from the linear parts of BET plots \((p/p_0 = 0.05-1.00)\). Solid state NMR experiments were explored on a Bruker AVANCE spectrometer at a magnetic field strength of 9.4 T with \(^1\text{H} \) frequency of 400.1 MHz, \(^{13}\text{C} \) frequency of 100.5 MHz, and \(^{29}\text{Si} \) frequency of 79.4 MHz with 4 mm rotor at two spinning frequency of 5.5 kHz and 8.0 kHz, TPPM decoupling is applied in the during acquisition period. \(^1\text{H} \) cross polarization in all solid state NMR experiments was employed using a contact time of 2 ms and the pulse lengths of 4μs.
Figure S1. FT-IR spectra of 4 and catalyst 5.

Figure S2. Small-angle powder XRD patterns of 4 and catalyst 5.
Table S1. Optimizing reaction conditions for the 5-catalysed enantioselective cascade reactions of (4-(phenylethynyl)phenyl)ethanone.

![Image of catalyst 5 catalyzing the reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru-loading</th>
<th>H-resource</th>
<th>Solvent</th>
<th>°C</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0 mol%</td>
<td>HCOOH</td>
<td>/</td>
<td>60</td>
<td>8</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>2.0 mol%</td>
<td>'PrOH</td>
<td>/</td>
<td>60</td>
<td>8</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>2.0 mol%</td>
<td>HCOOH/NEt$_3$</td>
<td>/</td>
<td>60</td>
<td>8</td>
<td>14</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>2.0 mol%</td>
<td>HCOO$_2$Na</td>
<td>H$_2$O/PrOH (1:3)</td>
<td>50</td>
<td>6</td>
<td>34</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>2.0 mol%</td>
<td>HCOO$_2$Na</td>
<td>H$_2$O/PrOH (1:3)</td>
<td>60</td>
<td>3</td>
<td>95</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>2.0 mol%</td>
<td>HCOO$_2$Na</td>
<td>H$_2$O/PrOH (1:2)</td>
<td>70</td>
<td>3</td>
<td>94</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>2.0 mol%</td>
<td>HCOO$_2$Na</td>
<td>H$_2$O/PrOH (1:4)</td>
<td>60</td>
<td>2</td>
<td>98</td>
<td>93</td>
</tr>
<tr>
<td>8</td>
<td>2.0 mol%</td>
<td>HCOO$_2$Na</td>
<td>H$_2$O/PrOH (1:3)</td>
<td>60</td>
<td>3</td>
<td>97</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>1.75 mol%</td>
<td>HCOO$_2$Na</td>
<td>H$_2$O/PrOH (1:3)</td>
<td>60</td>
<td>3</td>
<td>91</td>
<td>97</td>
</tr>
<tr>
<td>10</td>
<td>2.25 mol%</td>
<td>HCOO$_2$Na</td>
<td>H$_2$O/PrOH (1:3)</td>
<td>60</td>
<td>3</td>
<td>96</td>
<td>96</td>
</tr>
</tbody>
</table>

Reaction conditions: Catalyst 5 (4.38 mol% of Pd based on ICP analysis), HCOO$_2$Na (1.0 mmol), alkynone (0.10 mmol), and 2.0 mL of solvent were added sequentially to a 10.0 mL round–bottom flask. Yields were determined by 1H–NMR analysis and ee values were determined by chiral HPLC analysis.
Figure 3. The HPLC analysis for chiral products. (Table 1 in manuscript: The selective ATH/reduction one-pot enantioselective cascade reductions of conjugated alkynones.)

7a. (S)-1-(4-phenethylphenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C). [Literature (Chem. Eur. J. 2010, 16, 6748): HPLC: Chiracel AD-H, eluent: n-hexane/2-propanol = 95/5, flow rate = 0.7 mL/min, detected at 254 nm, Retention time: 10.98 min (S), 12.16 min (R).]

Translation of Chinese to English is as follows:
7b. (S)-1-(4-(4-fluorophenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:
7c. (S)-1-(4-(3-fluorophenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).
7d. (S)-1-(4-(4-chlorophenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).
7e. (S)-4-(4-(1-hydroxyethyl)phenethyl)benzonitrile: (HPLC: Chiracel OD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, 25 ℃).

Translation of Chinese to English is as follows:
7f. (S)-1-(4-(4-nitrophenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OD-H, detected at 254 nm, eluent: n-hexane/2-propanol = 96/4, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>RetTime [min]</th>
<th>Peak</th>
<th>Area</th>
<th>Heigh</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.49</td>
<td>4.63</td>
<td>1</td>
<td>554.377</td>
<td>95.54</td>
</tr>
<tr>
<td>2</td>
<td>3.49</td>
<td>49.369</td>
<td>2</td>
<td>3008</td>
<td>0.0190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>RetTime [min]</th>
<th>Peak</th>
<th>Area</th>
<th>Heigh</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.49</td>
<td>4.63</td>
<td>1</td>
<td>554.377</td>
<td>95.54</td>
</tr>
<tr>
<td>2</td>
<td>3.49</td>
<td>49.369</td>
<td>2</td>
<td>3008</td>
<td>0.0190</td>
</tr>
</tbody>
</table>
7g. (S)-1-(4-(4-methylphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>RetTime [min]</th>
<th>Peak</th>
<th>Area</th>
<th>Heigh</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3332.660</td>
<td>32.603</td>
<td>1</td>
<td>3017680</td>
<td>181061</td>
</tr>
<tr>
<td>2</td>
<td>3825.100</td>
<td>25.100</td>
<td>2</td>
<td>477173</td>
<td>11469</td>
</tr>
</tbody>
</table>
7h. (S)-1-(4-(3-methylphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:
7i. (S)-1-(4-(4-methoxyphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).
7j. (S)-1-(4-(3-methoxyphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OB-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:
7k. (S)-1-(3-phenethylphenyl)ethan-1-ol: (HPLC: Chiracel OJ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:

Name	**ReTime** [min]	**Peak**	**Area**	**Heigh**	**Area%**
1 | 3322.600 | 32.600 | 1 | 26100.00 | 551980 | 95.3241
2 | 3325.100 | 25.100 | 2 | 477973 | 11049 | 1.6059
71. (S)-1-(3-(4-fluorophenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OJ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:

Translation of Chinese to English is as follows:
7m. (S)-1-(3-(3-fluorophenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OJ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, 25 ºC).

Translation of Chinese to English is as follows:

Name	ReTime [min]	Peak	Area	Heigh	Area%
1 | 8324.140 | 26.640 | 1 | 22178000 | 97.2500 | 262450 | 96.2750
2 | 8373.650 | 10.650 | 2 | 991750 | 9.7000 | 19790 | 0.6275

7n. (S)-1-(3-(4-chlorophenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OJ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:
7o. (S)-1-(3-(4-methylphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OJ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:

Name	**ReTime** [min]	**Peak**	**Area**	**Heigh**	**Area%**
1 | 33.22 | 600 | 1 | 36185600 | 651.796 | 95.3241
2 | 33.25 | 100 | 2 | 4777073 | 11049 | 1.6059
7p. (S)-1-(3-(3-methylphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OJ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:
7q. (S)-1-(3-(4-methoxyphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel AS-H, detected at 254 nm, eluent: n-hexane/2-propanol = 96/4, flow rate = 1.0 mL/min, 25 ℃).

Translation of Chinese to English is as follows:

Name

ReTime [min]

Peak

Area

Heigh

Area%

<table>
<thead>
<tr>
<th>ID#</th>
<th>Name</th>
<th>Retention</th>
<th>Peak</th>
<th>Area</th>
<th>Heigh</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3322</td>
<td>600</td>
<td>25.602</td>
<td>0.000</td>
<td>0.000</td>
<td>4.295</td>
</tr>
<tr>
<td>2</td>
<td>3325</td>
<td>100</td>
<td>25.105</td>
<td>0.000</td>
<td>0.000</td>
<td>4.7753</td>
</tr>
</tbody>
</table>
7r. (S)-1-(3-(3-methoxyphenethyl)phenyl)ethan-1-ol: (HPLC: Chiracel OJ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, 25 °C).
7s. (S)-1-(4-hexylphenyl)ethan-1-ol: (HPLC: Chiracel OD-H, detected at 215 nm, eluent: n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, 25 ℃).

Translation of Chinese to English is as follows:
7t. (1S,1'S)-1,1'-(ethane-1,2-diylbis(4,1-phenylene))bis(ethan-1-ol): (HPLC: Chiracel OB-H, detected at 254 nm, eluent: n-hexane/2-propanol = 96/4, flow rate = 1.0 mL/min, 25 °C).

Translation of Chinese to English is as follows:
Figure 4. Reusability of catalyst 5 for the enantioselective cascade reductions of conjugated alkyrones.

Recycle 1

Recycle 2

Recycle 3

Translation of Chinese to English is as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>RetTime [min]</th>
<th>Peak</th>
<th>Area</th>
<th>Heigh</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1332.600</td>
<td>22.000</td>
<td>1</td>
<td>261906.69</td>
<td>651296.00</td>
</tr>
<tr>
<td>2</td>
<td>1335.086</td>
<td>25.100</td>
<td>2</td>
<td>477713.13</td>
<td>11064</td>
</tr>
</tbody>
</table>
Recycle 4

Recycle 5

Translation of Chinese to English is as follows:
Recycle 6

Recycle 7

Translation of Chinese to English is as follows:
Figure 5. The characterizations of chiral products (Table 1 in manuscript).

7a. *(S)*-1-(4-phenethylphenyl)ethan-1-ol. White solid, 99% yield, 97% ee. $[\alpha]_{D}^{25} = -25.891$ (c 0.216. CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.31 (dd, $J = 7.6$, 5.7 Hz, 4H), 7.21 (dt, $J = 8.2$, 5.5 Hz, 5H), 4.89 (q, $J = 6.4$ Hz, 1H), 2.94 (s, 4H), 1.88 (brs, 1H), 1.51 (d, $J = 6.6$z Hz, 3H). 13C[1H] NMR (100 MHz, CDCl$_3$): δ 143.5, 141.8, 141.0, 128.6, 128.5, 128.4, 126.0, 125.5, 70.2, 37.9, 37.6, 25.1. HRMS (ESI): m/z [M+Na]$^+$ calculated for C$_{16}$H$_{18}$ONa$: 249.1250; found: 249.1251. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7a (1H NMR, 13C NMR spectra).
7b. (S)-1-(4-(4-fluorophenethyl)phenyl)ethan-1-ol. White solid, 93% yield, 95% ee. [α]D25 = -29.648 (c 0.256, CHCl3). 1H NMR (400 MHz, CDCl3) δ 7.21 (t, J = 8.8 Hz, 2H), 7.12 – 6.99 (m, 4H), 6.88 (d, J = 8.6 Hz, 2H), 4.82 (q, J = 6.5 Hz, 1H), 2.82 (s, 4H), 1.70 (brs, 1H), 1.43 (d, J = 6.5 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 161.3 (d, J = 243 Hz), 143.5, 140.7, 137.3, 129.8, 128.6, 125.5, 114.9, 70.2, 37.6, 37.0, 25.1. HRMS (ESI): m/z [M+Na]+ calculated for C16H17FONa+: 267.1156; found: 267.1156. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7b (1H NMR, 13C NMR spectra).
7c. (S)-1-(4-(3-fluorophenethyl)phenyl)ethan-1-ol. Yellow liquid, 92% yield, 94% ee. $[\alpha]_D^{25} = -28.785$ (c 0.378, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.30 (d, $J = 8.2$ Hz, 2H), 7.25 – 7.20 (m, 1H), 7.16 (d, $J = 8.2$ Hz, 2H), 6.94 (d, $J = 7.7$ Hz, 1H), 6.93 – 6.87 (m, 2H), 4.89 (q, $J = 6.5$ Hz, 1H), 2.91 (s, 4H), 1.79 (brs, 1H), 1.50 (d, $J = 6.2$ Hz, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$) δ 162.9 (d, $J = 245$ Hz), 144.2 (d, $J = 6.5$ Hz), 143.6, 140.6, 129.8 (d, $J = 8.7$ Hz), 128.5, 125.5, 124.1 (d, $J = 2.3$ Hz), 115.3 (d, $J = 20.9$ Hz), 112.8 (d, $J = 21.5$ Hz), 70.2, 37.6, 37.5, 37.2, 25.1. HRMS (ESI): m/z [M+Na]$^+$ calculated for C$_{16}$H$_{17}$FONa$: 267.1156; found: 267.1158. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7c (1H NMR, 13C NMR spectra). (S)-1-(4-(3-fluorophenethyl)phenyl)ethan-1-ol.
7d. (S)-1-(4-(4-chlorophenethyl)phenyl)ethan-1-ol. White solid, 94% yield, 95% ee. $[\alpha]_D^{25} = -33.289$ (c 0.216, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.25 – 7.20 (m, 4H), 7.16 – 7.10 (m, 4H), 4.82 (qd, $J = 6.4$, 2.2 Hz, 1H), 2.86 – 2.85 (d, $J = 2.5$ Hz, 4H), 1.69 (brs, 1H), 1.43 (dd, $J = 6.7$, 2.4 Hz, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$) δ 143.5, 141.8, 141.1, 128.6, 128.5, 128.4, 126.0, 125.5, 70.3, 37.9, 37.6, 25.1. HRMS (ESI): m/z [M+Na]$^+$ calculated for C$_{16}$H$_{17}$ClONa$: 283.0860; found: 283.0861. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7d (1H NMR, 13C NMR spectra).
7e. **(S)-4-(4-(1-hydroxyethyl)phenethyl)benzonitrile.** White solid, 91% yield, 94% ee. \([\alpha]_D^{25} = -7.467 \) (c 0.214, CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 7.56 (d, \(J = 8.2 \) Hz, 2H), 7.29 (d, \(J = 8.0 \) Hz, 2H), 7.25 (d, \(J = 8.0 \) Hz, 2H), 7.12 (d, \(J = 8.1 \) Hz, 2H), 4.89 (q, \(J = 6.5 \) Hz, 1H), 3.06 – 2.83 (m, 4H), 1.69 (brs, 1H), 1.49 (d, \(J = 6.5 \) Hz, 3H). \(^13\)C\(^{1}\)H NMR (100 MHz, CDCl₃) \(\delta \) 147.2, 143.8, 139.9, 132.2, 129.3, 128.5, 125.6, 119.0, 109.0, 70.2, 37.9, 36.8, 25.2. HRMS (ESI): m/z \([M+NH_4]^+\) calculated for C\(_{17}\)H\(_{21}\)N\(_2\)O\(^+\): 269.1650; found: 269.1648. HPLC (Chiralpak OD-H, detector: 215 nm, elute: Hexane/i-PrOH = 95/5, flow rate: 1.0 mL/min, 25 °C).

7e \((^1\)H NMR, \(^13\)C NMR spectra).
7f. (S)-1-(4-(4-nitrophényl)phenyl)ethan-1-ol. Brown solid, 83% yield, 99% ee. $[\alpha]_D^{25} = -4.781$ (c 0.376, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (d, $J = 8.7$ Hz, 2H), 7.30 (d, $J = 7.2$ Hz, 4H), 7.13 (d, $J = 8.1$ Hz, 2H), 4.89 (q, $J = 6.5$ Hz, 1H), 3.03 – 2.94 (m, 4H), 1.70 (s, 1H), 1.49 (d, $J = 6.5$ Hz, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$) δ 149.3, 146.5, 143.9, 139.7, 129.3, 128.5, 123.6, 70.2, 37.6, 36.8, 25.2. HRMS (ESI): m/z [M+NH$_4$]$^+$ calculated for C$_{16}$H$_{21}$N$_2$O$_3$: 289.1548; found: 289.1547. HPLC (Chiralpak ODH, detector: 254 nm, elute: Hexane/i-PrOH = 96/4, flow rate: 1.0 mL/min, 25 °C).

7f (1H NMR, 13C NMR spectra).
7g. (S)-1-(4-(4-methylphenethyl)phenyl)ethan-1-ol. White solid, 95% yield, 95% ee. [α]_D^{25} = -20.693 (c 0.222, CHCl_3). 1H NMR (400 MHz, Chloroform-d) δ 7.30 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 4.89 (d, J = 6.3 Hz, 1H), 3.80 (s, 3H), 2.87 (q, J = 2.9 Hz, 4H), 1.74 (brs, 1H), 1.50 (d, J = 6.7 Hz, 3H). 13C(1H) NMR (100 MHz, CDCl_3) δ 143.4, 141.2, 138.7, 135.4, 129.0, 128.6, 128.3, 125.4, 70.3, 37.6, 37.4, 25.1, 21.0. HRMS (ESI): m/z [M+Na]^+ calculated for C_{17}H_{20}ONa: 263.1406; found: 263.1409. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7g (1H NMR, 13C NMR spectra).
7h. (S)-1-(4-(3-methylphenethyl)phenyl)ethan-1-ol. White solid, 94% yield, 95% ee. [α]D25 = -37.333 (c 0.214, CHCl3). 1H NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 8.3, 2.9 Hz, 2H), 7.20 (dd, J = 8.1, 2.8 Hz, 3H), 7.07 – 6.95 (m, 3H), 4.89 (qd, J = 6.5, 2.8 Hz, 1H), 2.90 (h, J = 3.4, 2.5 Hz, 4H), 2.34 (d, J = 3.1 Hz, 3H), 1.80 (brs, 1H), 1.53 – 1.44 (m, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 143.4, 141.7, 141.3, 137.9, 129.3, 128.6, 128.3, 126.7, 125.5, 125.4, 70.3, 37.9, 37.6, 25.1, 21.4. HRMS (ESI): m/z [M+Na]+ calculated for C17H20ONa+: 263.1406; found: 263.1407. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7h (1H NMR, 13C NMR spectra).
7i. (S)-1-(4-(4-methoxyphenethyl)phenyl)ethan-1-ol. White solid, 95% yield, 94% ee. [α]_D^{25} = -23.941 (c 0.292, CHCl₃). ^1H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 4.88 (q, J = 6.4 Hz, 1H), 3.80 (s, 3H), 2.88 (q, J = 3.0 Hz, 4H), 1.76 (brs, 1H), 1.50 (d, J = 6.6 Hz, 3H). ^13C(^1H) NMR (100 MHz, CDCl₃) δ 157.9, 143.4, 141.2, 133.9, 129.3, 128.6, 125.4, 113.8, 70.3, 55.3, 37.8, 37.0, 25.1. HRMS (ESI): m/z [M+Na]^+ calculated for C₁₇H₂₀O₂Na+: 279.1356; found: 279.1359. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7i (^1H NMR, ^13C NMR spectra).
7j. (S)-1-(4-(3-methoxyphenethyl)phenyl)ethan-1-ol. White solid, 92% yield, 95% ee. [α]_D^{25} = -39.207 (c 0.270, CHCl_3). ^1H NMR (400 MHz, CDCl_3) δ 7.30 (d, J = 8.2 Hz, 2H), 7.20 (dd, J = 7.8, 5.8 Hz, 3H), 6.84 – 6.72 (m, 3H), 4.88 (q, J = 6.5 Hz, 1H), 3.79 (s, 3H), 2.91 (s, 4H), 1.84 (brs, 1H), 1.50 (d, J = 6.5 Hz, 3H). ^13C{^1H} NMR (100 MHz, CDCl_3) δ 159.7, 143.5, 143.4, 141.0, 129.3, 128.6, 125.5, 120.9, 114.28, 111.3, 70.2, 55.2, 37.9, 37.4, 25.1. HRMS (ESI): m/z [M+Na]^+ calculated for C_{17}H_{20}O_2Na^+: 279.1356; found: 279.1361. HPLC (Chiralpak OB-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7j (^1H NMR, ^13C NMR spectra).
7k. (S)-1-(3-phenethylphenyl)ethan-1-ol. Yellow liquid, 93% yield, 95% ee. [α]D²⁵ = -21.766 (c 0.468, CHCl₃). H NMR (400 MHz, CDCl₃) δ 7.30 (q, J = 7.3 Hz, 3H), 7.22 (dd, J = 11.5, 7.5 Hz, 5H), 7.13 (d, J = 7.5 Hz, 1H), 4.87 (q, J = 6.5 Hz, 1H), 2.95 (s, 4H), 1.90 (s, 1H), 1.50 (d, J = 6.5 Hz, 3H). 13C(1H) NMR (100 MHz, CDCl₃) δ 145.9, 142.1, 141.8, 128.6, 128.4, 127.6, 126.0, 125.6, 123.1, 70.5, 38.1, 38.0, 25.2. HRMS (ESI): m/z [M+Na]⁺ calculated for C₁₆H₁₈ONa⁺: 249.1250; found: 249.1252. HPLC (Chiralpak OJ-H, detector: 254 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7k (1H NMR, 13C NMR spectra).
7l. (S)-1-(3-(4-fluorophenethyl)phenyl)ethan-1-ol. Yellow liquid, 91% yield, 94% ee. \([\alpha]_D^{25} = -33.116\) (c 0.386, CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta 7.21\) (t, \(J = 7.5\) Hz, 1H), \(7.14\) (d, \(J = 7.6\) Hz, 1H), \(7.09\) (s, 1H), \(7.07 - 6.99\) (m, 3H), \(6.89\) (t, \(J = 8.7\) Hz, 2H), \(4.80\) (q, \(J = 6.4\) Hz, 1H), \(2.84\) (s, 4H), \(1.82\) (brs, 1H), \(1.41\) (d, \(J = 6.2\) Hz, 3H). \(^{13}\)C\(^{1}\)H NMR (100 MHz, CDCl₃) \(\delta 161.4\) (d, \(J = 245\) Hz), \(145.9\), \(141.7\), \(137.3\) (d, \(J = 3.2\) Hz), \(129.8\) (d, \(J = 7.4\) Hz), \(128.5\), \(127.6\), \(125.5\), \(123.1\), \(115.0\) (d, \(J = 21.5\) Hz), \(70.4\), \(38.1\), \(37.1\), \(25.2\). HRMS (ESI): m/z [M+Na]\(^+\) calculated for \(\text{C}_{16}\text{H}_{17}\text{FO}\text{Na}^+\): 267.1156; found: 267.1158. HPLC (Chiralpak OJ-H, detector: 254 nm, elute: Hexane/i-PrOH = 97/3, flow rate: 1.0 mL/min, 25 °C).

7l (\(^1\)H NMR, \(^{13}\)C NMR spectra).
7m. (S)-1-(3-(3-fluorophenethyl)phenyl)ethan-1-ol. Yellow liquid, 90% yield, 94% ee. \([\alpha]_D^{25} = -22.323\) (c 0.340, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.27 – 7.13 (m, 3H), 7.11 (s, 1H), 7.05 (d, \(J = 7.3\) Hz, 1H), 6.91 – 6.82 (m, 3H), 4.79 (q, \(J = 6.4\) Hz, 1H), 2.87 (s, 4H), 2.19 – 2.09 (m, 1H). 1.42 (d, \(J = 6.3\) Hz, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 162.9 (d, \(J = 245\) Hz), 146.1, 144.2 (d, \(J = 7.2\) Hz), 141.5, 129.7 (d, \(J = 8.4\) Hz), 128.6, 127.5, 125.4, 124.2 (d, \(J = 2.7\) Hz), 123.2, 115.3 (d, \(J = 21.1\) Hz), 112.8 (d, \(J = 21.1\) Hz), 70.4, 37.6, 37.6, 25.2. HRMS (ESI): \(m/z\) [M+Na]\(^+\) calculated for C\(_{16}\)H\(_{17}\)FONa\(^+\): 267.1156; found: 267.1157. HPLC (Chiralpak OJ-H, detector: 254 nm, elute: Hexane/i-PrOH = 97/3, flow rate: 1.0 mL/min, 25 °C).

7m \(^1\)H NMR, \(^13\)C NMR spectra.
7n. (S)-1-(3-(4-chlorophenethyl)phenyl)ethan-1-ol. Yellow liquid, 91% yield, 93% ee. [α]D²⁵ = -23.839 (c 0.310, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 3H), 7.21 (dt, J = 8.3, 5.9 Hz, 4H), 7.13 (d, J = 7.4 Hz, 1H), 4.87 (q, J = 6.4 Hz, 1H), 3.13 – 2.72 (m, 4H), 1.82 (brs, 1H), 1.49 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.9, 142.1, 141.7, 128.5, 128.4, 127.6, 126.0, 125.6, 123.1, 70.5, 38.0, 37.9, 25.2. HRMS (ESI): m/z [M+Na]+ calculated for C₁₆H₁₇ClONa⁺: 283.0860; found: 283.0862. HPLC (Chiralpak OJ-H, detector: 254 nm, elute: Hexane/i-PrOH = 97/3, flow rate: 1.0 mL/min, 25 °C).

7n (¹H NMR, ¹³C NMR spectra).
7o. (S)-1-(3-(4-methylphenethyl)phenyl)ethan-1-ol. Yellow liquid, 92% yield, 96% ee. \([\alpha]_{D}^{25} = -24.845\) (c 0.410, CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.30\) (t, \(J = 7.5\) Hz, 1H), 7.22 (d, \(J = 9.2\) Hz, 2H), 7.15 – 7.10 (m, 5H), 4.88 (q, \(J = 6.4\) Hz, 1H), 2.97 – 2.88 (m, 4H), 2.36 (s, 3H), 1.93 (s, 1H), 1.50 (d, \(J = 6.2\) Hz, 3H). \(^1\)C\(^{1}\)H NMR (100 MHz, CDCl\(_3\)) \(\delta 145.9, 142.2, 138.7, 135.4, 129.1, 128.6, 128.4, 127.6, 125.6, 123.1, 70.5, 38.2, 37.6, 25.2, 21.1. HRMS (ESI): m/z [M+Na]^+ calculated for C\(_{17}\)H\(_{20}\)O\(_{2}\)Na\(^+\): 263.1406; found: 263.1414. HPLC (Chiralpak OJ-H, detector: 254 nm, elute: Hexane/i-PrOH = 97/3, flow rate: 1.0 mL/min, 25 °C).

7o (\(^1\)H NMR, \(^{13}\)C NMR spectra).
7p. (S)-1-(3-(3-methylphenethyl)phenyl)ethan-1-ol. Yellow liquid, 92% yield, 95% ee. $[\alpha]_D^{25} = -22.688$ (c 0.493, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.30 (d, $J = 14.9$ Hz, 1H), 7.25 – 7.18 (m, 3H), 7.15 (d, $J = 7.5$ Hz, 1H), 7.09 – 7.01 (m, 3H), 4.88 (q, $J = 6.6$ Hz, 1H), 2.93 (d, $J = 3.4$ Hz, 4H), 2.36 (s, 3H), 1.90 (brs, 1H), 1.51 (d, $J = 6.6$ Hz, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$) δ 145.9, 142.2, 141.7, 137.9, 129.3, 128.5, 128.3, 127.6, 126.7, 125.6, 125.5, 123.0, 70.5, 38.1, 38.0, 25.2, 21.4. HRMS (ESI): m/z [M+Na]$^+$ calculated for C$_{17}$H$_{20}$ONa$^+$: 263.1406; found: 263.1409. HPLC (Chiralpak OJ-H, detector: 254 nm, elute: Hexane/i-PrOH = 97/3, flow rate: 1.0 mL/min, 25 °C).

7p (1H NMR, 13C NMR spectra).
7q. (S)-1-(3-(4-methoxyphenethyl)phenyl)ethan-1-ol. Yellow liquid, 92% yield, 96% ee.

$[\alpha]_D^{25} = -22.122$ (c 0.316, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.29 (t, $J = 7.5$ Hz, 1H), 7.25 – 7.16 (m, 2H), 7.11 (d, $J = 8.6$ Hz, 3H), 6.85 (d, $J = 8.5$ Hz, 2H), 4.87 (q, $J = 6.5$ Hz, 1H), 3.80 (s, 3H), 2.95 – 2.86 (m, 4H), 2.03 (brs, 1H), 1.49 (d, $J = 6.3$ Hz, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$) δ 157.9, 145.9, 142.1, 133.9, 129.4, 128.5, 127.6, 125.6, 123.0, 113.8, 70.4, 55.3, 38.3, 37.1, 25.2. HRMS (ESI): m/z [M+Na]$^+$ calculated for C$_{17}$H$_{20}$O$_2$Na$: 279.1356$; found: 279.1364. HPLC (Chiralpak AS-H, detector: 254 nm, elute: Hexane/i-PrOH = 96/4, flow rate: 1.0 mL/min, 25 °C).

7q (1H NMR, 13C NMR spectra).
7r. (S)-1-(3-(3-methoxyphenethyl)phenyl)ethan-1-ol. Yellow liquid, 91% yield, 95% ee.
\[^{[\alpha]}_D^{25} = -24.247\ (c\ 0.486,\ CHCl_3)\].
\[^{1}H\ NMR\ (400\ MHz,\ CDCl_3)\ \delta\ 7.23\ (t, J = 7.4\ Hz, 1H),\ 7.20 – 7.11\ (m, 3H),\ 7.10 – 7.04\ (m, 1H),\ 6.78 – 6.65\ (m, 3H),\ 4.80\ (q, J = 6.5\ Hz, 1H),\ 3.73\ (s, 3H),\ 2.98 – 2.76\ (m, 4H),\ 2.14\ (brs, 1H),\ 1.43\ (d, J = 6.2\ Hz, 3H).\ \[^{13}C\ NMR\ (100\ MHz,\ CDCl_3)\ \delta\ 159.6,\ 146.0,\ 143.4,\ 142.0,\ 129.4,\ 128.6,\ 127.6,\ 125.6,\ 123.1,\ 121.1,\ 114.4,\ 111.3,\ 70.4,\ 55.2,\ 38.0,\ 37.9,\ 25.2.\ HRMS\ (ESI):\ m/z\ [M+Na]^+\ calculated\ for\ C_{17}H_{20}O_{2}Na^+:\ 279.1356;\ found: 279.1364.\ HPLC\ (Chiralpak\ OJ-H,\ detector:\ 254\ nm,\ elute:\ Hexane/i-PrOH = 97/3\ flow\ rate: 1.0\ mL/min, 25 °C).

7r (\[^{1}H\ NMR,\ \[^{13}C\ NMR\ spectra\].)
7s. (S)-1-(4-hexylphenyl)ethan-1-ol. Colorless liquid, 86% yield, 97% ee. [α]D^25 = -5.707 (c 0.350, CHCl₃). \(^1\)H NMR (400 MHz, CHCl₃) δ 7.29 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 4.88 (q, J = 6.4 Hz, 1H), 2.66 – 2.57 (m, 2H), 1.68 (brs, 1H), 1.60 (ddd, J = 9.2, 4.6, 1.5 Hz, 2H), 1.49 (d, J = 6.4 Hz, 3H), 1.32 – 1.29 (m, 6H), 0.90 – 0.86 (m, 3H). \(^1^3\)C{\(^1\)H} NMR (100 MHz, CHCl₃) δ 143.0, 142.3, 128.5, 125.3, 70.3, 35.6, 31.7, 31.5, 29.0, 25.0, 22.6, 14.1. HRMS (ESI): m/z [M+NH₄]^+ calculated for C₁₄H₂₆N0: 224.2111; found: 224.2009. HPLC (Chiralpak OD-H, detector: 215 nm, elute: Hexane/i-PrOH = 98/2, flow rate: 1.0 mL/min, 25 °C).

7s. (\(^1\)H NMR, \(^1^3\)C NMR spectra).
7t. (1S,1'S)-1,1'-[(ethane-1,2-diylbis(4,1-phenylene))bis(ethan-1-ol)]. Colorless liquid, 86% yield, 99% ee, 21:1 dr. $[\alpha]_D^{25} = -9.939$ (c 0.422, CHCl$_3$). 1H NMR (400 MHz, CHCl$_3$) δ 7.30 (d, $J = 8.0$ Hz, 4H), 7.18 (d, $J = 8.0$ Hz, 4H), 4.93 – 4.85 (m, 2H), 2.89 (s, 4H), 1.77 (brs, 2H), 1.49 (d, $J = 9.3$ Hz, 6H). 13C(1H) NMR (101 MHz, Chloroform-d) δ 143.4, 141.0, 128.5, 125.5, 70.3, 37.5, 25.1. HRMS (ESI): m/z [M+NH$_4$]$^+$ calculated for C$_{18}$H$_{26}$NO$: 288.1960; found: 288.1958. (HPLC: Chiracel OB-H, detected at 254 nm, eluent: n-hexane/2-propanol = 96/4, flow rate = 1.0 mL/min, 25 °C).

7t. (1H NMR, 13C NMR spectra).