Electrochemical Synthesis of Tetrazoles via Metal- and Oxidant-Free [3 + 2] Cycloaddition of Azide with Aldehyde Hydrazone

Zenghui Ye, Feng Wang, Yong Li and Fengzhi Zhang*

Supporting Information

Table of Contents:

1. General Information	S2
2. General methods of synthesizing the products	S2
3. Radical scavenger experiments	S3
4. Cyclic voltammetry studies:	S3
5. Synthesis and characterization of the products	S5
6. References	
7. NMR spectra	S18

1. General information

All reagents were obtained from commercial suppliers and used without further purification. Yields for all compounds were determined by the column chromatography which was generally performed on silica gel (200-300 mesh) using petroleum ether 40-60 (PE)/EtOAc as eluent, and reactions were monitored by thin layer chromatography (TLC) on a glass pate coated with silica gel with fluorescent indicator (GF254) using UV light and iodine chromogenic method. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ADNANCE III 500 MHz using CDCl₃ as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.28 for ¹H and 77.16 for ¹³C, and to DMSO-d₆ with 2.50 for ¹H and 39.52 for ¹³C. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and coupling constants are expressed in hertz. Melting points were measured on a SGW_® X-4B apparatus and uncorrected. HRMS were recorded on Agilent 6210TOF LC/MS mass spectrometer.

Electrolysis experiments were performed using a DC power supply.

Caution! Acetonitrile (MeCN) can be metabolised to produce hydrogen cyanide. Appropriate protective measures should be taken to avoid direct contaction during operation.

2. General procedure of synthesizing the products

General procedure: A 10-mL three-necked round-bottomed flask was charged with aldehyde hydrazone 1 (0.3 mmol, 1 equiv), $LiClO_4$ (0.3 mmol, 1 equiv) and $TMSN_3$ (1.5 mmol, 5 equiv). The flask was equipped with a condenser, a reticulated vitreous carbon (RVC) anode (100 PPI, 1 cm x 1 cm), and a platinum plate (1 cm x 1 cm) cathode. MeOH (2 mL) and MeCN (4 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under 0 °C for 2 h (2.5 F). When the reaction was finished, the reaction mixture was transferred to a single-necked flask and concentrated under reduced pressure. The given residue was purified by column chromatography through silica gel to provide the desired product.

Procedure for gram scale synthesis: The 2.0 g scale electrolysis of aldehyde hydrazone **1ag** was conducted in a 200-mL beaker-type cell with a RVC anode (100 PPI, 3 cm x 3 cm x 1.2 cm), a Pt plate cathode (1 cm x 1 cm), and a constant current of 90 mA (6 h, 2.23 F mol⁻¹). The reaction mixture consisted **1ag** (1.8 g, 9 mmol), LiClO₄ (1.0 g, 10 mmol), TMSN₃ (3.55 mL, 27 mmol), MeOH (33 mL) and MeCN (66 mL).

Procedure for one-pot reaction: The morpholin-4-amine (0.5 mmol, 1 equiv), aldehyde (0.5 mmol, 1 equiv), MgSO₄ (1 mmol, 2 equiv) and MeCN (2 mL) were added in a 10 mL undivided three-necked round-bottomed flask, the mixture was stirred at room temperature until TLC

indicated that condensation was complete. Then, $LiClO_4$ (1 mmol, 2 equiv) and $TMSN_3$ (2.5 mmol, 5 equiv) was added followed by MeCN (5 mL) and MeOH (3 mL). Meantime the flask was equipped with RVC anode (100 PPI, 1 cm x 1 cm x 1 cm) and Pt plate cathode (1 cm x 1 cm). The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under 0 °C for 3.3 h (2.5 F). When the reaction was finished, the reaction mixture was transferred to a single-necked flask and concentrated under reduced pressure. The given residue was purified by column chromatography through silica gel to provide the desired product.

Notes:

- 1. MeOH and MeCN can be recovered by rotary evaporation for repeated use.
- 2. When co-solvent was recovered by rotary evaporation, the given residue could be washed with water to remove or recycle LiClO₄.

Figure S1. Electrolysis setup

3. Radical scavenger experiments

Following the general procedure A (**1a** as the starting material), there is no cyclized product was detected when introducing TEMPO (0.6 mmol, 2 equiv) into the system. When 0.3 mmol TEMPO was used, the reaction need more electricity to accomplish the cycloaddition. Those results indicate this reaction might involve a radical process.

4. Cyclic voltammetry studies:

The cyclic voltammograms were recorded in an electrolyte of $LiClO_4(0.1 \text{ M})$ in MeCN/MeOH (2:1) using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and an Ag/AgCl reference electrode. The scan rate is 50 mV/s.

Figure S2. Cyclic voltammograms. a: background; b: TMSN₃ (20 mM); c: **1a** (10 mM); d: **1a** (10 mM)+TMSN₃ (20 mM); e: TEMPO (10 mM).

Figure S3. Cyclic voltammograms. a: S1 (10 mM); b: S2 (10 mM); c: S3 (10 mM); d: S4 (10

Figure S4. Cyclic voltammograms. a: 1a (10 mM)+TMSN₃ (20 mM).

5. Synthesis and characterization of the products:

4-(5-phenyl-1*H***-tetrazol-1-yl)morpholine (3aa):** white solid; m.p.= 92-94 °C; ¹**H** NMR (500 MHz, CDCl₃) δ 8.28 – 8.22 (m, 2H), 7.62 – 7.52 (m, 3H), 3.97 (t, *J* = 4.7 Hz, 4H), 3.44 (dd, *J* = 6.5, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 131.6, 129.0, 128.3, 123.2, 66.6, 55.8. The spectra data matched with values reported in the literature.¹

4-(5-(p-tolyl)-1*H***-tetrazol-1-yl)morpholine (3ab):** white solid; m.p. = 139-141 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 – 8.12 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.00 – 3.91 (m, 4H), 3.43 (dd, *J* = 6.3, 3.3 Hz, 4H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.0, 142.2, 129.7, 128.2, 120.4, 66.6, 55.8, 21.6. The spectra data matched with values reported in the literature.¹

4-(5-(4-fluorophenyl)-1*H***-tetrazol-1-yl)morpholine (3ac):** light yellow solid; m.p. = 148-150 °C; ¹**H** NMR (500 MHz, CDCl₃) δ 8.32 – 8.26 (m, 2H), 7.27 – 7.22 (m, 2H), 3.96 (t, *J* = 4.7 Hz, 4H), 3.43 (dd, *J* = 6.3, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 164.6 (d, *J* _{*C-F*} = 253.3 Hz), 149.1, 130.6 (d, *J* _{*C-F*} = 8.7 Hz), 119.5 (d, *J* _{*C-F*} = 3.5 Hz), 116.3 (d, *J* _{*C-F*} = 22 Hz), 66.6, 55.9. The spectra data matched with values reported in the literature.¹

4-(5-(4-chlorophenyl)-1*H***-tetrazol-1-yl)morpholine (3ad):**white solid; m.p. = 164-165 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 8.25 – 8.20 (m, 2H), 7.57 – 7.52 (m, 2H), 3.97 (t, *J* = 4.7 Hz, 4H), 3.43 (dd, *J* = 6.5, 3.3 Hz, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 149.2, 138.1, 129.6, 129.5, 121.8, 66.6, 55.9. The spectra data matched with values reported in the literature.¹

4-(5-(4-bromophenyl)-1*H***-tetrazol-1-yl)morpholine (3ae):** white solid; m.p. = 164-166 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 – 8.12 (m, 2H), 7.73 – 7.68 (m, 2H), 3.96 (t, *J* = 4.7 Hz, 4H), 3.43 (dd, *J* = 6.5, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 132.4, 129.7, 126.5, 122.2, 66.6, 55.9. The spectra data matched with values reported in the literature.¹

4-(5-(4-iodophenyl)-1*H***-tetrazol-1-yl)morpholine (3af):** white solid; m.p. = 178-180 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.6 Hz, 2H), 7.92 (d, J = 8.5 Hz, 2H), 3.96 (t, J = 4.7 Hz, 4H), 3.43 (dd, J = 6.6, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 149.4, 138.3, 129.7, 122.7, 98.7, 66.6, 55.9. The spectra data matched with values reported in the literature.¹

4-(5-(4-methoxyphenyl)-1*H***-tetrazol-1-yl)morpholine (3ag):** white solid; m.p. = 104-106 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.25 – 8.22 (m, 2H), 7.07 – 7.03 (m, 2H), 3.98 – 3.94 (m, 4H), 3.90 (s, 3H), 3.42 (dd, J = 6.4, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 162.2, 149.7, 130.0, 115.6, 114.5, 66.7, 55.8, 55.5. The spectra data matched with values reported in the literature.¹

N,N-diethyl-4-(1-morpholino-1*H***-tetrazol-5-yl)aniline (3ah):** white solid; m.p. = 132-134 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.22 – 8.12 (m, 2H), 6.75 (d, *J* = 8.6 Hz, 2H), 3.97 (t, *J* = 4.7 Hz, 4H), 3.48 – 3.39 (m, 8H), 1.23 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 150.0, 149.8, 129.7, 110.9, 109.0, 66.7, 55.6, 44.4, 12.5. HRMS (ESI) *m/z* Calcd for C₁₅H₂₃N₆O [M + H]⁺: 303.1928; found 303.1931.

N-(4-(1-morpholino-1*H***-tetrazol-5-yl)phenyl)acetamide (3ai):** yellow solid; m.p. = 184-187 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 10.29 (s, 1H), 8.17 – 8.13 (m, 2H), 7.84 – 7.80 (m, 2H), 3.85 (t, *J* = 4.6 Hz, 4H), 3.35 – 3.32 (m, 4H), 2.11 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 168.9, 149.5, 142.1, 129.1, 118.8, 117.1, 65.9, 55.6, 24.1. HRMS (ESI) *m/z* Calcd for C₁₃H₁₇N₆O₂ [M + H]⁺: 289.1408; found 289.1408.

4-(5-(4-(trifluoromethoxy)phenyl)-1*H*-tetrazol-1-yl)morpholine (3aj): white solid; m.p. = 79-81 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.39 – 8.32 (m, 2H), 7.41 (dq, *J* = 9.1, 1.1 Hz, 2H), 3.98 (t, *J* = 4.7 Hz, 4H), 3.45 (dd, *J* = 6.5, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 151.5, 148.9, 130.1, 121.8, 121.1, 120.3(d, *J*_{C-F} = 258.9 Hz), 66.6, 55.9. HRMS (ESI) *m/z* Calcd for C₁₂H₁₃F₃N₅O₂ [M + H]⁺: 316.1016; found 316.1013.

4-(1-morpholino-1*H***-tetrazol-5-yl)benzonitrile (3ak):** white solid; m.p. = 149-151 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.45 – 8.39 (m, 2H), 7.89 – 7.84 (m, 2H), 3.98 (t, *J* = 4.7 Hz, 4H), 3.45 (dd, *J* = 6.4, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 148.5, 132.8, 128.8, 127.4, 117.8, 115.3, 66.5, 56.1. The spectra data matched with values reported in the literature.¹

Methyl 4-(1-morpholino-1*H***-tetrazol-5-yl)benzoate (3al):** white solid; m.p. = 160-162 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.36 – 8.32 (m, 2H), 8.24 – 8.20 (m, 2H), 3.98 (d, *J* = 5.1 Hz, 7H), 3.45 (dd, *J* = 6.4, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 149.3, 132.8, 130.1, 128.3, 127.2, 66.6, 56.0, 52.5. The spectra data matched with values reported in the literature.¹

4-(5-(4-(methylsulfonyl)phenyl)-1*H*-tetrazol-1-yl)morpholine (3am): white solid; m.p. = 157-159 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.51 – 8.47 (m, 2H), 8.18 – 8.12 (m, 2H), 3.98 (t, J = 4.7 Hz, 4H), 3.46 (dd, J = 6.4, 3.3 Hz, 4H), 3.14 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.6, 143.2, 129.3, 128.3, 128.1, 66.5, 56.1, 44.3. HRMS (ESI) *m/z* Calcd for C₁₂H₁₆N₅O₃S [M + H]⁺: 310.0968; found 310.0964.

4-(5-(3-(trifluoromethyl)phenyl)-1*H***-tetrazol-1-yl)morpholine (3ba):** white solid; m.p. = 115-117 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, *J* = 1.8 Hz, 1H), 8.48 (dt, *J* = 8.0, 1.4 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.72 (t, *J* = 7.9 Hz, 1H), 3.98 (t, *J* = 4.7 Hz, 4H), 3.46 (dd, *J* = 6.3, 3.2 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 148.8, 131.6(JC-F=18.6), 129.8, 128.3(JC-F=3.5), 125.0(JC-F=3.5), 124.1, 123.6(JC-F=270), 66.6, 55.9. **HRMS** (ESI) *m/z* Calcd for C₁₂H₁₃F₃N₅O [M + H]⁺: 300.1067; found 300.1073.

4-(5-(3-chlorophenyl)-1*H***-tetrazol-1-yl)morpholine (3bb):** light yellow solid; m.p. = 137-139 °C; ¹H NMR (500 MHz, CDCl3) δ 8.31 (t, *J* = 1.9 Hz, 1H), 8.17 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.56 (ddd, *J* = 8.1, 2.1, 1.2 Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 1H), 3.98 (t, *J* = 4.7 Hz, 4H), 3.45 (dd, *J* = 6.5, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 148.8, 135.1, 131.7, 130.4, 128.3, 126.4, 124.9, 66.6, 55.9. The spectra data matched with values reported in the literature.¹

4-(5-(*o***-tolyl)-1***H***-tetrazol-1-yl)morpholine (3ca):** light yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (td, J = 7.5, 1.6 Hz, 1H), 7.37 (td, J = 8.1, 1.4 Hz, 2H), 7.32 (td, J = 7.6, 1.3 Hz, 1H), 3.80 (t, J = 4.7 Hz, 4H), 3.32 (dd, J = 6.5, 3.3 Hz, 4H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.4, 138.1, 130.9, 130.8, 129.9, 125.8, 122.8, 66.3, 55.8, 20.2. The spectra data matched with values reported in the literature.¹

4-(5-(2-bromophenyl)-1*H***-tetrazol-1-yl)morpholine (3cb):** light brown solid; m.p. =136-138 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.79 – 7.73 (m, 1H), 7.51 – 7.45 (m, 2H), 7.40 – 7.35 (m, 1H), 3.78 (t, *J* = 4.7 Hz, 4H), 3.37 (dd, *J* = 6.3, 3.4 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 151.6, 133.3, 132.4, 131.6, 127.5, 125.8, 123.3, 66.4, 55.9. The spectra data matched with values reported in the literature.¹

4-(5-(4-methoxy-2-methylphenyl)-1*H***-tetrazol-1-yl)morpholine (3d):** light yellow liquid; ¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.5 Hz, 1H), 6.89 (d, *J* = 2.6 Hz, 1H), 6.85 (dd, *J* = 8.5, 2.8 Hz, 1H), 3.87 (s, 3H), 3.82 (t, *J* = 4.7 Hz, 4H), 3.32 (dd, *J* = 6.5, 3.4 Hz, 4H), 2.36 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 161.4, 151.2, 140.2, 131.4, 116.3, 114.9, 111.5, 66.4, 55.8, 55.3, 20.7. **HRMS** (ESI) *m/z* Calcd for C₁₃H₁₈N₅O₂ [M + H]⁺: 276.1455; found 276.1459.

4-(5-(naphthalen-1-yl)-1*H***-tetrazol-1-yl)morpholine (3e):** brown liquid; ¹**H NMR** (500 MHz, CDCl₃) δ 8.08 (dt, J = 8.2, 1.1 Hz, 1H), 7.98 – 7.93 (m, 2H), 7.67 (dd, J = 7.2, 1.3 Hz, 1H), 7.64 – 7.53 (m, 3H), 3.74 (t, J = 4.7 Hz, 4H), 3.40 – 3.31 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 150.9, 133.6, 131.7, 131.2, 128.8, 128.6, 127.5, 126.7, 124.8, 124.7, 120.5, 66.3, 56.0. The spectra data matched with values reported in the literature.¹

4-(5-(2,2-difluorobenzo[*d*][1,3]dioxol-5-yl)-1*H*-tetrazol-1-yl)morpholinee (3f): light yellow solid; m.p. = 102-104 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (dd, *J* = 8.4, 1.7 Hz, 1H), 8.07 (d, *J* = 1.7 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 3.98 (t, *J* = 4.7 Hz, 4H), 3.44 (dd, *J* = 6.3, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 148.7, 145.9, 144.1, 131.5 (t, *J* _{*C-F*} = 258.0 Hz), 124.9, 119.2, 110.1, 109.4, 66.5, 55.9. HRMS (ESI) *m/z* Calcd for C₁₂H₁₂F₂N₅O₃ [M + H]⁺: 312.0903; found 312.0905.

4-(5-(2,3-dihydrobenzofuran-5-yl)-1*H***-tetrazol-1-yl)morpholine (3g):** brown solid; m.p. = 126-128 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.14 – 8.07 (m, 2H), 6.95 – 6.88 (m, 1H), 4.69 (td, *J* = 8.7, 5.9 Hz, 2H), 4.02 – 3.88 (m, 4H), 3.42 (dd, *J* = 6.5, 3.4 Hz, 4H), 3.32 (t, *J* = 8.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 150.0, 128.9, 128.2, 125.5, 115.4, 109.7, 72.0, 66.6, 55.7, 29.3. The spectra data matched with values reported in the literature.¹

4-(5-(pyridin-2-yl)-1*H*-tetrazol-1-yl)morpholine (3h): white solid; m.p. = 121-122 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.82 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.12 (dt, J = 7.9, 1.1 Hz, 1H), 7.91 (td, J = 7.8, 1.8 Hz, 1H), 7.49 (ddd, J = 7.7, 4.8, 1.2 Hz, 1H), 3.94 – 3.91 (m, 4H), 3.55 – 3.51 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 150.3, 150.2, 144.0, 136.9, 125.4, 124.8, 66.6, 56.0. HRMS (ESI) *m/z* Calcd for C₁₀H₁₃N₆O [M + H]⁺: 233.1145; found 233.1147.

4-(5-(pyridin-3-yl)-1*H***-tetrazol-1-yl)morpholine (3i):** light yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.49 (d, J = 2.3 Hz, 1H), 8.81 (dd, J = 4.9, 1.7 Hz, 1H), 8.53 (dt, J = 8.1, 2.0 Hz, 1H), 7.53 (ddd, J = 8.1, 4.8, 0.9 Hz, 1H), 3.98 (t, J = 4.7 Hz, 4H), 3.46 (dd, J = 6.4, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 152.36, 148.84, 148.26, 135.86, 123.84, 66.51, 56.07. HRMS (ESI) *m/z* Calcd for C₁₀H₁₃N₆O [M + H]⁺: 233.1145; found 233.1147.

4-(5-(pyridin-4-yl)-1*H***-tetrazol-1-yl)morpholine (3j):** light yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.88 – 8.82 (m, 2H), 8.17 – 8.13 (m, 2H), 4.01 – 3.96 (m, 4H), 3.45 (dd, J = 6.5, 3.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 150.89, 148.18, 130.70, 121.75, 66.53, 56.10. HRMS (ESI) *m/z* Calcd for C₁₀H₁₃N₆O [M + H]⁺: 233.1145; found 233.1147.

4-(5-(2,5-dimethylthiophen-3-yl)-1*H***-tetrazol-1-yl)morpholine (3k):** light brown solid; m.p. = 103-105 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (q, *J* = 1.2 Hz, 1H), 3.98 – 3.91 (m, 4H), 3.39 (dd, *J* = 6.1, 3.4 Hz, 4H), 2.74 (s, 3H), 2.52 – 2.47 (m, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 147.49, 143.62, 136.75, 124.35, 118.65, 66.62, 55.86, 15.58, 15.24. **HRMS** (ESI) *m/z* Calcd for C₁₁H₁₆N₅OS [M + H]⁺: 266.1070; found 266.1062.

4-(5-(3, 5-dimethylisoxazol-4-yl)-1*H***-tetrazol-1-yl)morpholine (3l):** light yellow liquid; ¹H **NMR** (500 MHz, CDCl₃) δ 3.87 (t, *J* = 4.7 Hz, 4H), 3.35 (dd, *J* = 6.4, 3.3 Hz, 4H), 2.56 (s, 3H), 2.38 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 170.9, 158.7, 144.6, 100.9, 66.4, 56.1, 12.7, 11.2. The spectra data matched with values reported in the literature.¹

4-(5-(4-methylthiazol-5-yl)-1*H***-tetrazol-1-yl)morpholine (3m):** light yellow oil; ¹**H** NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 4.01 (t, *J* = 4.7 Hz, 4H), 3.40 (dd, *J* = 6.5, 3.3 Hz, 4H), 3.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 155.5, 146.9, 111.7, 66.4, 55.7, 18.3. HRMS (ESI) *m/z* Calcd for C₉H₁₃N₆OS [M + H]⁺: 253.0866; found 253.0876.

4-(5-(1-methyl-1*H***-imidazol-2-yl)-1H-tetrazol-1-yl)morpholine (3n):** white solid; m.p. = 139-141 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 1.1 Hz, 1H), 7.15 (d, J = 1.1 Hz, 1H), 4.06 (s, 3H), 3.98 – 3.95 (m, 4H), 3.57 – 3.54 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 143.58, 132.14, 130.69, 124.72, 66.50, 55.84, 35.35. HRMS (ESI) *m*/*z* Calcd for C₉H₁₄N₇O [M + H]⁺: 236.1254; found 236.1256.

N-methyl-N,5-diphenyl-1*H***-tetrazol-1-amine (4e):** brown solid; m.p. = 94-96 °C; ¹**H** NMR (500 MHz, CDCl₃) δ 8.19 – 8.13 (m, 2H), 7.59 – 7.54 (m, 1H), 7.53 – 7.48 (m, 2H), 7.36 – 7.30 (m, 2H), 7.09 (tt, *J* = 7.3, 1.0 Hz, 1H), 6.70 (dt, *J* = 7.8, 1.1 Hz, 2H), 3.56 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.8, 147.5, 131.9, 129.7, 129.1, 128.2, 123.3, 122.7, 115.2, 42.9.

$$\mathsf{Ph}^{\mathsf{N}-\mathsf{N}}_{\mathsf{N}}^{\mathsf{N}}_{\mathsf{N}}$$

N-benzyl-N,5-diphenyl-1*H***-tetrazol-1-amine (4f):** brown solid; m.p. = 89-91 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.73 (dd, J = 8.4, 1.3 Hz, 2H), 7.51 – 7.47 (m, 1H), 7.42 – 7.36 (m, 4H), 7.20 – 7.12 (m, 2H), 7.05 (dd, J = 8.5, 6.8 Hz, 2H), 6.98 (ddt, J = 8.8, 7.8, 1.1 Hz, 4H), 4.97 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 153.2, 147.6, 133.1, 131.4, 129.8, 129.2, 128.6, 128.4, 128.4, 124.1, 122.8, 117.0, 60.8. **HRMS** (ESI) m/z Calcd for C₂₀H₁₈N₅ [M + H]⁺: 328.1557; found 328.1559.

N-methyl-N-(5-phenyl-1*H***-tetrazol-1-yl)pyridin-2-amine (4g):** brown liquid; ¹**H** NMR (500 MHz, CDCl₃) δ 8.33 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 8.13 – 8.05 (m, 2H), 7.59 – 7.53 (m, 2H), 7.49 (tt, J = 6.9, 1.7 Hz, 2H), 6.96 (ddd, J = 7.3, 4.9, 0.8 Hz, 1H), 6.20 (dt, J = 8.5, 0.9 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.6, 152.3, 148.2, 138.5, 132.0, 129.2, 128.0, 122.5, 117.9, 108.0, 40.2. **HRMS** (ESI) *m/z* Calcd for C₁₃H₁₃N₆ [M + H]⁺: 253.1196; found 253.1194.

1-(5-phenyl-1*H***-tetrazol-1-yl)piperidine (4h):** light yellow solid;m.p. = 74-76 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.31 – 8.25 (m, 2H), 7.59 – 7.52 (m, 3H), 3.36 – 3.32 (m, 4H), 1.89 – 1.83 (m, 4H), 1.69 – 1.60 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 131.4, 128.9, 128.3, 123.6, 56.8, 25.8, 22.9. HRMS (ESI) *m/z* Calcd for C₁₂H₁₆N₅ [M + H]⁺: 230.1400; found 230.1401.

1-methyl-4-(5-phenyl-1*H***-tetrazol-1-yl)piperazine (4i):** yellow solid; m.p. = 123-126 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.30 – 8.22 (m, 2H), 7.60 – 7.52 (m, 3H), 3.45 (s, 4H), 2.72 (s, 4H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 131.5, 128.9, 128.3, 123.4, 55.2, 54.6, 45.7. HRMS (ESI) *m/z* Calcd for C₁₂H₁₇N₆ [M + H]⁺: 245.1509; found 245.1506.

2-(5-phenyl-1*H***-tetrazol-1-yl)octahydrocyclopenta[***c***]pyrrole (4j): white solid ; m.p. = 94-96 °C; ¹H NMR (500 MHz, CDCl₃) \delta 8.28 – 8.20 (m, 2H), 7.60 – 7.50 (m, 3H), 3.65 (dd,** *J* **= 8.8, 7.6 Hz, 2H), 3.17 (dd,** *J* **= 8.8, 3.3 Hz, 2H), 2.84 (dq,** *J* **= 7.7, 4.0 Hz, 2H), 1.94 – 1.86 (m, 2H), 1.86 – 1.80 (m, 1H), 1.62 (dq,** *J* **= 12.2, 5.9 Hz, 1H), 1.58 – 1.49 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) \delta 150.7, 131.3, 128.8, 128.4, 123.6, 62.6, 40.6, 33.3, 26.4. HRMS (ESI)** *m/z* **Calcd for C₁₄H₁₈N₅ [M + H]⁺: 256.1557; found 256.1555.**

4-(5-neopentyl-1*H***-tetrazol-1-yl)morpholine (5a):** light yellow liquid; ¹**H** NMR (500 MHz, CDCl₃) δ 3.91 (t, *J* = 4.7 Hz, 4H), 3.28 (s, 4H), 2.78 (s, 2H), 1.04 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 151.38, 66.53, 56.08, 35.67, 31.97, 29.45. **HRMS** (ESI) *m/z* Calcd for C₁₀H₂₀N₅O [M + H]⁺: 226.1662; found 226.1656.

4-(5-nonyl-1*H***-tetrazol-1-yl)morpholine (5b):** colorless liquid; ¹**H** NMR (500 MHz, CDCl₃) δ 3.96 – 3.85 (m, 4H), 3.29 (dd, J = 6.2, 3.3 Hz, 4H), 2.88 – 2.82 (m, 2H), 1.81 – 1.72 (m, 2H), 1.39 – 1.24 (m, 12H), 0.87 (t, J = 6.9 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 153.25, 66.52, 55.96, 31.79, 29.31, 29.18, 29.06, 29.01, 27.06, 22.63, 22.60, 14.04. HRMS (ESI) *m/z* Calcd for C₁₄H₂₈N₅O [M + H]⁺: 282.2288; found 282.2280.

4-(5-(2-(methylthio)ethyl)-1*H***-tetrazol-1-yl)morpholine (5c):** light yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 3.91 (t, *J* = 4.7 Hz, 4H), 3.33 (dd, *J* = 6.3, 3.3 Hz, 4H), 3.18 (t, *J* = 7.1 Hz, 2H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.13 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.85, 66.53, 56.08, 31.46, 22.79, 15.53. HRMS (ESI) *m/z* Calcd for C₈H₁₆N₅OS [M + H]⁺: 230.1070; found 230.1062.

4-(5-benzyl-1*H***-tetrazol-1-yl)morpholine (5d):** light yellow solid; m.p. = 92-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.24 (m, 5H), 4.25 (s, 2H), 3.79 (t, *J* = 4.7 Hz, 4H), 3.05 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 152.2, 134.5, 128.8, 128.8, 127.5, 66.4, 55.6, 29.2. HRMS (ESI) *m/z* Calcd for C₁₂H₁₆N₅O [M + H]⁺: 246.1349; found 246.1354.

4-(5-phenethyl-1*H***-tetrazol-1-yl)morpholine (5e):** white solid; m.p. = 48-50 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 7.21 – 7.16 (m, 1H), 7.13 – 7.08 (m, 2H), 3.75 (t, *J* = 4.7 Hz, 4H), 3.21 (td, *J* = 6.9, 1.4 Hz, 2H), 3.13 (td, *J* = 6.9, 1.3 Hz, 2H), 2.89 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 152.6, 139.5, 128.6, 128.6, 126.7, 66.5, 55.7, 33.8, 24.7. HRMS (ESI) *m/z* Calcd for C₁₃H₁₈N₅O [M + H]⁺: 260.1506; found 260.1506.

4-(5-(1-(4-isopropylphenyl)propan-2-yl)-1*H*-tetrazol-1-yl)morpholine (5f): white solid; m.p. = 67-69 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.06 – 7.01 (m, 2H), 6.93 – 6.88 (m, 2H), 3.68 (t, *J* = 4.7 Hz, 4H), 3.46 (ddt, *J* = 13.3, 9.5, 7.4 Hz, 1H), 3.05 – 2.99 (m, 2H), 2.99 – 2.93 (m, 2H), 2.80 (hept, *J* = 6.9 Hz, 1H), 2.42 (s, 2H), 1.50 (d, *J* = 7.0 Hz, 3H), 1.16 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 156.37, 147.44, 136.35, 128.91, 126.48, 66.53, 55.59, 42.49, 33.66, 31.76, 24.07, 23.96, 19.66. HRMS (ESI) *m/z* Calcd for C₁₇H₂₆N₅O [M + H]⁺: 316.2132; found 316.2124.

4-(5-(1-(4-(*tert***-butyl)phenyl)propan-2-yl)-1***H***-tetrazol-1-yl)morpholine (5g): white solid m.p. = 95-98 °C; ¹H NMR (500 MHz, CDCl₃) \delta 7.21 – 7.17 (m, 2H), 6.93 – 6.88 (m, 2H), 3.67 (t,** *J* **= 4.7 Hz, 4H), 3.46 (dddd,** *J* **= 12.6, 10.2, 8.4, 6.2 Hz, 1H), 3.06 – 2.98 (m, 2H), 2.95 (ddd,** *J* **= 9.9, 5.0, 3.4 Hz, 2H), 1.51 (d,** *J* **= 7.0 Hz, 3H), 1.23 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) \delta 156.4, 149.7, 136.0, 128.6, 125.3, 66.5, 55.5, 42.4, 34.3, 31.7, 31.3, 19.7. HRMS (ESI)** *m/z* **Calcd for C₁₈H₂₇N₅ONa [M + Na]⁺: 352.2108; found 352.2104.**

4-(5-(6-methylhept-5-en-2-yl)-1*H***-tetrazol-1-yl)morpholine (5h):** light yellow liquid; ¹**H NMR** (500 MHz, CDCl₃) δ 5.06 (ddq, J = 8.3, 5.5, 1.4 Hz, 1H), 3.91 (t, J = 4.7 Hz, 4H), 3.37 – 3.26 (m, 4H), 3.23 (q, J = 7.0 Hz, 1H), 1.98 – 1.92 (m, 2H), 1.92 – 1.85 (m, 1H), 1.77 – 1.70

(m, 1H), 1.68 - 1.66 (t, J = 1.4 Hz, 3H), 1.53 (s, 3H), 1.38 - 1.34 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.68, 132.69, 123.00, 66.55, 56.03, 34.86, 28.42, 25.65, 25.51, 18.76, 17.67. HRMS (ESI) *m/z* Calcd for C₁₃H₂₄N₅O [M + H]⁺: 266.1975; found 266.1966.

4-(5-(phenylethynyl)-1*H***-tetrazol-1-yl)morpholine (5i):** light yellow solid; m.p. = 93-95 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.63 (m, 2H), 7.54 – 7.49 (m, 1H), 7.48 – 7.43 (m, 2H), 3.98 (dd, *J* = 5.2, 4.1 Hz, 4H), 3.47 – 3.39 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 139.24, 132.27, 130.72, 128.74, 120.02, 102.22, 71.10, 66.50, 55.81. HRMS (ESI) *m/z* Calcd for C₁₃H₁₄N₅O [M + H]⁺: 256.1193; found 256.1183.

4-(5-cyclopropyl-1*H***-tetrazol-1-yl)morpholine (5j):** white solid; m.p. = 68-69 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.94 (dd, J = 5.3, 4.1 Hz, 4H), 3.35 (dd, J = 6.0, 3.5 Hz, 4H), 2.17 (tt, J = 8.3, 4.9 Hz, 1H), 1.28 – 1.24 (m, 2H), 1.24 – 1.18 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 155.17, 66.57, 55.78, 9.37, 3.85. HRMS (ESI) *m*/*z* Calcd for C₈H₁₄N₅O [M + H]⁺: 196.1193; found 196.1189.

4-(5-(cyclohex-3-en-1-yl)-1*H***-tetrazol-1-yl)morpholine (5k):** colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 5.90 – 5.71 (m, 2H), 3.92 (t, *J* = 4.7 Hz, 4H), 3.32 (dd, *J* = 6.0, 3.2 Hz, 4H), 3.28 – 3.19 (m, 1H), 2.53 – 2.42 (m, 1H), 2.39 – 2.29 (m, 1H), 2.23 (ddq, *J* = 6.9, 3.5, 1.8 Hz, 2H), 2.05 – 1.96 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.18, 126.92, 124.88, 66.55, 56.18, 29.44, 29.21, 26.54, 24.71. HRMS (ESI) *m/z* Calcd for C₁₁H₁₈N₅O [M + H]⁺: 236.1506; found 236.1506.

4-(5-((1*S***,4***S***)-bicyclo[2.2.1]hept-5-en-2-yl)-1***H***-tetrazol-1-yl)morpholine (5l): colorless liquid; ¹H NMR (500 MHz, CDCl₃) \delta 6.31 (dd, J = 5.7, 3.1 Hz, 1H), 5.79 (dd, J = 5.7, 2.9 Hz, 1H), 3.95 (t, J = 4.7 Hz, 4H), 3.46 (ddd, J = 9.4, 4.5, 3.5 Hz, 1H), 3.35 – 3.29 (m, 5H), 3.06 (dq, J = 3.6, 1.7 Hz, 1H), 2.26 (ddd, J = 11.8, 9.4, 3.7 Hz, 1H), 1.72 (ddd, J = 11.8, 4.5, 2.6 Hz, 1H), 1.63 – 1.59 (m, 1H), 1.52 – 1.48 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) \delta 155.6, 138.5, 131.7, 66.6, 56.0, 49.9, 46.4, 42.6, 33.0, 31.2. HRMS (ESI)** *m/z* **Calcd for C₁₂H₁₈N₅O [M + H]⁺: 248.1506; found 248.1504.**

tert-butyl 4-(1-morpholino-1*H*-tetrazol-5-yl)piperidine-1-carboxylate (5m): white solid; m.p. = 163-165 °C; ¹H NMR (500 MHz, CDCl₃) δ 4.20 (d, *J* = 13.4 Hz, 2H), 3.93 (t, *J* = 4.7 Hz, 4H), 3.32 (s, 4H), 3.15 (p, *J* = 7.7 Hz, 1H), 2.94 (dt, *J* = 14.4, 7.5 Hz, 2H), 1.90 (tt, *J* = 6.6, 3.2 Hz, 4H), 1.48 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.00, 154.61, 79.90, 66.51, 56.24, 31.38, 29.42, 28.44. HRMS (ESI) *m/z* Calcd for C₁₅H₂₇N₆O₃ [M + H]⁺: 339.2139; found 339.2140.

5. References:

1 Z. Wu, P. Xu, N. Zhou, Y. Duan, M. Zhang and C. Zhu, Chem. Commun., 2017, 53, 1045-1047

6. NMR spectra.

4-(5-(p-tolyl)-1*H*-tetrazol-1-yl)morpholine (3ab)

4-(5-(4-fluorophenyl)-1*H*-tetrazol-1-yl)morpholine (3ac)

4-(5-(4-chlorophenyl)-1*H*-tetrazol-1-yl)morpholine (3ad)

4-(5-(4-bromophenyl)-1*H*-tetrazol-1-yl)morpholine (3ae)

4-(5-(4-iodophenyl)-1*H*-tetrazol-1-yl)morpholine (3af)

4-(5-(4-methoxyphenyl)-1*H*-tetrazol-1-yl)morpholine (3ag)

N,N-diethyl-4-(1-morpholino-1*H*-tetrazol-5-yl)aniline (3ah)

N-(4-(1-morpholino-1*H*-tetrazol-5-yl)phenyl)acetamide (3ai)

4-(5-(4-(trifluoromethoxy)phenyl)-1*H*-tetrazol-1-yl)morpholine (3aj)

4-(1-morpholino-1*H*-tetrazol-5-yl)benzonitrile (3ak)

Methyl 4-(1-morpholino-1*H*-tetrazol-5-yl)benzoate (3al)

4-(5-(4-(methylsulfonyl)phenyl)-1*H*-tetrazol-1-yl)morpholine (3am)

4-(5-(3-(trifluoromethyl)phenyl)-1*H*-tetrazol-1-yl)morpholine (3ba)

4-(5-(3-chlorophenyl)-1*H*-tetrazol-1-yl)morpholine (3bb)

4-(5-(o-tolyl)-1*H*-tetrazol-1-yl)morpholine (3ca)

4-(5-(2-bromophenyl)-1*H*-tetrazol-1-yl)morpholine (3cb)

4-(5-(4-methoxy-2-methylphenyl)-1*H*-tetrazol-1-yl)morpholine (3d)

4-(5-(naphthalen-1-yl)-1*H*-tetrazol-1-yl)morpholine (3e)

4-(5-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-1*H*-tetrazol-1-yl)morpholinee (3f)

4-(5-(2,3-dihydrobenzofuran-5-yl)-1*H*-tetrazol-1-yl)morpholine (3g)

4-(5-(pyridin-2-yl)-1*H*-tetrazol-1-yl)morpholine (3h)

4-(5-(pyridin-3-yl)-1*H*-tetrazol-1-yl)morpholine (3i)

4-(5-(pyridin-4-yl)-1*H*-tetrazol-1-yl)morpholine (3j)

4-(5-(2,5-dimethylthiophen-3-yl)-1*H*-tetrazol-1-yl)morpholine (3k)

4-(5-(3, 5-dimethylisoxazol-4-yl)-1*H*-tetrazol-1-yl)morpholine (31)

4-(5-(4-methylthiazol-5-yl)-1*H*-tetrazol-1-yl)morpholine (3m)

4-(5-(1-methyl-1*H*-imidazol-2-yl)-1*H*-tetrazol-1-yl)morpholine (3n)

N-methyl-N,5-diphenyl-1*H*-tetrazol-1-amine (4e)

N-benzyl-N,5-diphenyl-1*H*-tetrazol-1-amine (4f)

N-methyl-N-(5-phenyl-1*H*-tetrazol-1-yl)pyridin-2-amine (4g)

1-(5-phenyl-1*H*-tetrazol-1-yl)piperidine (4h)

1-methyl-4-(5-phenyl-1*H*-tetrazol-1-yl)piperazine (4i)

2-(5-phenyl-1*H*-tetrazol-1-yl)octahydrocyclopenta[c]pyrrole (4j)

4-(5-nonyl-1*H*-tetrazol-1-yl)morpholine (5b)

4-(5-benzyl-1*H*-tetrazol-1-yl)morpholine (5d)

4-(5-phenethyl-1*H*-tetrazol-1-yl)morpholine (5e)

4-(5-(1-(4-(tert-butyl)phenyl)propan-2-yl)-1H-tetrazol-1-yl)morpholine (5g)

4-(5-(6-methylhept-5-en-2-yl)-1*H*-tetrazol-1-yl)morpholine (5h)

4-(5-(phenylethynyl)-1*H*-tetrazol-1-yl)morpholine (5i)

4-(5-(cyclohex-3-en-1-yl)-1*H*-tetrazol-1-yl)morpholine (5k)

4-(5-((1*S*,4*S*)-bicyclo[2.2.1]hept-5-en-2-yl)-1*H*-tetrazol-1-yl)morpholine (5l)

tert-butyl 4-(1-morpholino-1H-tetrazol-5-yl)piperidine-1-carboxylate (5m)