Support Information

Cascade Knoevenagel and Aza-Wittig Reactions for the Synthesis of Substituted Quinolines and Quinolin-4-ols

Xiaofeng Zhang, Xiaoming Ma, Weiqi Qiu, Jason Evans, Wei Zhang

Content

1.	General information	S2
2.	General procedures	S2
3.	Characterization of products	S2
4.	NMR spectra of products	S10
5.	Green chemistry metrics analysis	S119
	5.1 Published synthetic method, Process A	S120
	5.2 Published synthetic method, Process B	S123
	5.3 Current method, Process C	S126
6.	References	S130

1. General information

Chemicals and solvents were purchased from Sigma and Oakwood. ¹H-NMR (400 MHz) and ¹³C-NMR spectra (101 MHz) were recorded on Agilent NMR spectrometers. Chemical shifts were reported in parts per million (ppm), Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). LC-MS were performed on an Agilent 2100 LC with a 6130 quadrupole MS spectrometers. A C18 column (5.0μ m, $6.0 \times 50 mm$) was used for the separation. The mobile phases were MeOH and H₂O both containing 0.05% CF₃CO₂H. A linear gradient from 25:75 (v/v) MeOH/water to 100% MeOH over 7.0 min at a flow rate of 0.7 mL/min was used as a mobile phase. UV detections were conducted at 210 nm, 254 nm and 365 nm. Low resolution mass spectra were recorded in APCI (atmospheric pressure chemical ionization). Final products were purified were performed on YAMAZEN AI-580 flash column system with Agela silica gel columns (230-400 µm mesh).

2. General procedure for one-pot synthesis

General procedure 1 for the synthesis of **4**, **8**, **12** and **16**. To a solution of 2azidobenzaldehyde **1** (0.50 mmol), compound **2**, **6**, **10** or **14** (0.55 mmol), Et₃N (0.50 mmol) and Ph₃P (0.6mmol) in 2.5 mL of CH₃CN was heated at 95 °C for 12 h. The reaction mixture upon the completion of the reaction as monitored by LC-MS. The reaction mixture was concentrated and washed with plenty of Et₂O or separated on a YAMAZEN AI-580 flash column to afford purified targets.

General procedure 2 for the synthesis of **5**, **9**, **17** and **18**. To a solution of 2azidobenzaldehyde **1** (0.50 mmol), compound **3**, **7**, **15** or Cyclic 1,3-dicarbonyl (0.55 mmol), Et₃N (0.50 mmol) and Ph₃P (0.6mmol) in 2.5 mL of CH₃CN was heated at 95 °C for 12 h. The reaction mixture upon the completion of the reaction as monitored by LC-MS. The reaction mixture was concentrated and separated on a YAMAZEN AI-580 flash column to afford purified targets.

General procedure 3 for the synthesis of **13**. To a solution of 2-azidobenzaldehyde **1** (0.50 mmol), compound **11** (0.55 mmol), LiOH (0.60 mmol) and Ph₃P (0.6mmol) in 2.5 mL of CH₃CN was heated at 95 °C for 6 h. The reaction mixture upon the completion of the reaction as monitored by LC-MS. The reaction mixture was concentrated and separated on a YAMAZEN AI-580 flash column to afford purified products **13**.

3. Characterization of products

Ethyl 4-hydroxy-2-methylquinoline-3-carboxylate (4a): white solid (90% yield). ¹H NMR (400 MHz, DMSO) δ 11.84 (s, 1H), 8.03 (dd, J = 8.1, 1.5 Hz, 1H), 7.64 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.31 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, DMSO) δ 173.8, 167.2, 149.3, 139.6, 132.6, 125.5, 125.0, 124.1, 118.4, 115.2, 60.7, 18.6, 14.6. HRMS (ESI-TOF,

m/z): [M+H]⁺ calcd. for C₁₃H₁₄NO₃ 232.0974, found: 232.0977.

(4-hydroxy-2-phenylquinolin-3-yl)(phenyl)methanone (4b): white solid (91% yield). ¹H NMR (400 MHz, DMSO) δ 12.12 (s, 1H), 8.10 – 8.05 (m, 1H), 7.79 – 7.68 (m, 4H), 7.56 – 7.49 (m, 1H), 7.47 – 7.34 (m, 8H).¹³C NMR (101 MHz, DMSO) δ 196.2, 175.5, 150.1, 140.6, 138.5, 134.3, 133.4, 132.8, 130.3, 129.4, 129.1, 129.0, 128.9, 125.3, 124.3, 120.7, 119.5. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₂₂H₁₆NO₂ 326.1181, found: 326.1177. *Ethyl 8-hydroxy-6-methyl-[1,3]dioxolo[4,5-g]quinoline-7-carboxylate (4c):* white solid (77% yield). ¹H NMR (400 MHz, DMSO) δ 11.89 – 11.57 (m, 1H), 7.34 – 7.30 (m, 1H), 6.95 – 6.90 (m, 1H), 6.12 (s, 2H), 4.24 – 4.14 (m, 2H), 2.34 – 2.28 (m, 3H), 1.28 – 1.19 (m, 3H).¹³C NMR (101 MHz, DMSO) δ 206.9, 172.6, 167.3, 151.8, 147.5, 145.8, 136.6, 120.4, 114.6, 102.5, 102.0, 97.1, 60.6, 31.1, 18.3, 14.6. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C_{14H14}NO₅ 276.0872, found: 276.0874.

Ethyl 6-bromo-4-hydroxy-2-methylquinoline-3-carboxylate (4d): white solid (89% yield). ¹H NMR (400 MHz, DMSO) δ 12.01 (s, 1H), 8.10 (d, J = 2.4 Hz, 1H), 7.80 (dd, J = 8.8, 2.4 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 172.5, 166.8, 149.9, 138.5, 135.4, 127.6, 126.5, 121.1, 116.8, 115.5, 60.9, 18.6, 14.6.HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₃H₁₃BrNO₃ 310.0079, found: 310.0081.

Ethyl 6-chloro-4-hydroxy-2-methylquinoline-3-carboxylate (4e): white solid (85% yield). ¹H NMR (400 MHz, DMSO) δ 12.02 (s, 1H), 7.99 – 7.93 (m, 1H), 7.69 (dd, J = 8.8, 2.5 Hz, 1H), 7.58 – 7.52 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, DMSO) δ 172.6, 166.9, 149.9, 138.3, 132.8, 128.7, 126.1, 124.4, 121.0, 115.4, 60.8, 18.7, 14.6. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₃H₁₃ClNO₃ 266.0584, found: 266.0582.

Isopropyl 4-hydroxy-2-methylquinoline-3-carboxylate (4f): white solid (87% yield). ¹H NMR (400 MHz, DMSO) δ 11.80 (s, 1H), 8.05 – 7.98 (m, 1H), 7.64 (ddd, J = 8.4, 7.2, 1.4 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.34 – 7.28 (m, 1H), 5.05 (dq, J = 12.6, 6.3 Hz, 1H), 2.36 (s, 3H), 1.25 (d, J = 6.3 Hz, 6H).¹³C NMR (101 MHz, DMSO) δ 173.8, 166.6, 148.8, 139.6, 132.6, 125.4, 125.0, 124.0, 118.4, 115.6, 68.1, 22.1, 18.4. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₄H₁₆NO₃ 246.1130, found: 246.1132.

Ethyl 4-hydroxy-2-phenylquinoline-3-carboxylate (4g): white solid (80% yield). ¹H NMR (400 MHz, DMSO) δ 12.05 (s, 1H), 8.12 – 8.08 (m, 1H), 7.71 – 7.64 (m, 2H), 7.58 – 7.50 (m, 5H), 7.37 (ddd, J = 14.5, 7.3, 4.3 Hz, 1H), 3.94 (q, J = 7.1 Hz, 2H), 0.89 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, DMSO) δ 174.0, 166.7, 150.0, 140.2, 134.4, 132.8, 130.6, 129.0, 128.6, 125.4, 125.1, 124.4, 119.4, 115.9, 60.6, 14.1. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₈H₁₆NO₃ 294.1130, found: 294.1127.

Ethyl 6-chloro-4-hydroxy-2-phenylquinoline-3-carboxylate (4h): white solid (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 13.57 (s, 1H), 8.20 (t, J = 1.5 Hz, 1H), 7.63 – 7.58 (m, 4H), 7.53 (ddd, J = 6.8, 4.0, 1.3 Hz, 1H), 7.46 – 7.39 (m, 2H), 4.26 (q, J = 7.1 Hz, 2H), 0.89 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 200.5, 169.2, 160.1, 146.9, 140.4, 133.6, 131.7, 129.4, 128.4, 128.0, 127.7, 123.1, 119.0, 102.9, 61.9, 13.5. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₈H₁₅ClNO₃ 328.0740, found: 328.0736.

Ethyl 4-hydroxy-2-propylquinoline-3-carboxylate (4i): white solid (88% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.09 (s, 1H), 8.32 (dd, J = 8.2, 1.3 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.59 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.37 – 7.28 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.87 – 2.74 (m, 2H), 1.85 – 1.70 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H)..¹³C NMR (101 MHz, CDCl₃) δ 175.7, 167.4, 154.5, 139.8, 132.3, 125.4, 125.1, 124.3, 118.9, 115.0, 61.0, 34.9, 23.0, 14.1, 13.8. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₅H₁₈NO₃ 260.1287, found: 260.1291.

Ethyl 2-ethyl-4-hydroxyquinoline-3-carboxylate (4j): white solid (83% yield). ¹H NMR (400 MHz, CDCl₃) δ 11.98 (s, 1H), 8.33 (dd, J = 8.1, 1.1 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.66 – 7.53 (m, 1H), 7.33 (t, J = 7.3 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.96 – 2.80 (m, 2H), 1.42 – 1.29 (m, 3H), 1.29 – 1.18 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 167.4, 155.7, 139.8, 132.3, 125.5, 124.3, 118.8, 61.1, 26.7, 14.1, 13.8. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₄H₁₆NO₃ 246.1130, found: 246.1127.

Ethyl 2-cyclopropyl-4-hydroxyquinoline-3-carboxylate(*4***k**): white solid (83% yield). ¹H NMR (400 MHz, DMSO) δ 10.89 (s, 1H), 8.00 (dd, J = 8.1, 1.5 Hz, 1H), 7.70 – 7.57 (m, 2H), 7.30 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.11 – 1.99 (m, 1H), 1.29 – 1.23 (m, 3H), 1.04 (dd, J = 5.3, 4.6 Hz, 4H).¹³C NMR (101 MHz, DMSO) δ 173.6, 167.4, 152.2, 139.7, 132.5, 125.2, 124.9, 124.0, 118.8, 116.8, 60.9, 14.6, 13.4, 8.1. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₅H₁₆NO₃ 258.1130, found: 258.1132.

Ethyl 4-hydroxy-2-(thiophen-2-yl)quinoline-3-carboxylate (41): white solid (81% yield). ¹H NMR (400 MHz, DMSO) δ 11.98 (s, 1H), 8.08 (dt, J = 8.1, 1.1 Hz, 1H), 7.91 – 7.87 (m, 1H), 7.72 – 7.68 (m, 2H), 7.54 (dt, J = 4.8, 2.4 Hz, 1H), 7.41 – 7.34 (m, 1H), 7.26 (dd, J = 5.0, 3.6 Hz, 1H), 4.11 – 4.05 (m, 2H), 1.07 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, DMSO) δ 174.0, 166.7, 142.3, 140.1, 133.8, 133.1, 130.7, 130.6, 128.3, 125.3, 124.9, 124.6, 119.3, 116.4, 61.1, 49.0, 14.2.HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₆H₁₄NO₃S 300.0694, found: 300.0700.

Ethyl 2-methylquinoline-3-carboxylate (5a): white solid (89% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.07 – 7.97 (m, 1H), 7.89 – 7.81 (m, 1H), 7.80 – 7.70 (m, 1H), 7.55 – 7.47 (m, 1H), 4.47 – 4.36 (m, 2H), 2.98 (s, 3H), 1.47 – 1.39 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 158.4, 148.6, 139.8, 131.6, 128.5, 128.4, 126.5, 125.7, 123.9, 61.4, 25.7, 14.3. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₃H₁₄NO₂ 216.1025, found: 216.1022.

Ethyl 6-bromo-2-phenylquinoline-3-carboxylate (5b): white solid (88% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.57 – 8.48 (m, 1H), 8.09 – 8.00 (m, 2H), 7.90 – 7.81 (m, 1H), 7.66 – 7.58 (m, 2H), 7.51 – 7.40 (m, 3H), 4.24 – 4.14 (m, 2H), 1.07 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 158.4, 146.9, 140.3, 137.8, 134.9, 131.2, 130.1, 128.8, 128.5, 128.2, 126.9, 126.4, 121.1, 61.7, 13.7. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for

C₁₈H₁₅BrNO₂ 356.0286, found: 356.0290.

Ethyl 2-isopropylquinoline-3-carboxylate (5c): colorless oil (79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 0.6 Hz, 1H), 8.06 (ddd, J = 8.5, 1.8, 0.8 Hz, 1H), 7.82 (dt, J = 8.8, 4.4 Hz, 1H), 7.75 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.51 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 3.95 (tt, J = 13.5, 6.8 Hz, 1H), 1.48 – 1.42 (t, J= 7.1 3H), 1.41 – 1.36 (d, J = 6.9, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 148.6, 138.9, 131.0, 129.0, 128.1, 126.3, 125.4, 124.2, 61.4, 50.8, 32.9, 22.3, 14.3, HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₅H₁₈NO₂ 244.1318, found: 244.1321.

Phenyl(2-phenylquinolin-3-yl)methanone (5d): white solid (79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 0.6 Hz, 1H), 8.25 (ddd, J = 8.5, 1.8, 0.8 Hz, 1H), 7.90 (dt, J = 8.4, 2.5 Hz, 1H), 7.87 – 7.80 (m, 1H), 7.74 – 7.68 (m, 2H), 7.66 – 7.59 (m, 3H), 7.53 – 7.45 (m, 2H), 7.34 – 7.26 (m, 4H). ¹³CMR (101 MHz, CDCl₃) δ 196.9, 157.4, 148.3, 139.7, 137.6, 137.0, 133.3, 132.8, 132.4, 132.1, 132.0, 131.2, 129.9, 129.7, 129.2, 128.8, 128.7, 128.5, 128.4, 128.4, 128.4, 128.1, 127.3, 127.1, 125.8. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₂₂H₁₆NO 310.1232, found: 310.1319.

Ethyl 4-hydroxy-2-(trifluoromethyl)quinoline-3-carboxylate (8a): white solid (87% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.93 (s, 1H), 8.37 (ddd, J = 8.3, 1.5, 0.6 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.91 – 7.84 (m, 1H), 7.68 (t, J = 7.4 Hz, 1H), 4.52 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 169.5, 169.4, 168.3, 147.1, 133.3, 129.8, 128.4, 123.5, 122.3, 120.9, 63.0, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.38. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₃H₁₁F₃NO₃ 286.0691, found: 286.0688.

Ethyl 6-*chloro-4-hydroxy-2-(trifluoromethyl)quinoline-3-carboxylate* (**8***b*): white solid (89% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.93 (s, 1H), 8.32 (d, J = 2.4 Hz, 1H), 8.04 (d, J = 8.9 Hz, 1H), 7.80 (dd, J = 8.9, 2.4 Hz, 1H), 4.53 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 169.2, 167.4, 145.5, 134.6, 134.1, 131.4, 122.6, 122.3, 121.4, 119.6, 116.9, 63.3, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.46. HRMS (ESI-TOF, m/z): [M+H]⁺ calcd. for C₁₃H₁₀ClF₃NO₃ 320.0301, found: 320.0305.

Ethyl 6-bromo-4-hydroxy-2-(trifluoromethyl)quinoline-3-carboxylate (8c): white solid (87% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, J = 2.0, 0.6 Hz, 1H), 7.98 – 7.90 (m, 2H), 4.53 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 169.4, 167.3, 145.7, 136.7, 131.4, 126.0, 122.7, 122.3, 121.8, 119.6, 63.3, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.49. HRMS (ESI-TOF, *m/z*): $[M+H]^+$ calcd. for C₁₃H₁₀BrF₃NO₃ 363.9796, found: 363.9800.

Ethyl 4-hydroxy-7-methoxy-2-(trifluoromethyl)quinoline-3-carboxylate (8d): white solid (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.88 (s, 1H), 8.26 – 8.19 (m, 1H), 7.41 (d, J = 2.5 Hz, 1H), 7.29 – 7.23 (m, 1H), 4.50 (q, J = 7.2 Hz, 2H), 3.96 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 169.5, 167.9, 163.8, 149.5, 124.8, 122.5, 121.0, 119.8, 114.9, 108.3, 100.7, 62.8, 55.8, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.40. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₄H₁₃F₃NO₄ 316.0797, found: 316.0801.

Ethyl 8-hydroxy-6-(trifluoromethyl)-[1,3]dioxolo[4,5-g]quinoline-7-carboxylate (8e): white solid (82% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.65 (s, 1H), 7.58 – 7.52 (m, 1H), 7.39 – 7.34 (m, 1H), 6.17 (s, 2H), 4.50 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H). ¹³CMR (101 MHz, CDCl₃) δ 169.5, 166.4, 153.5, 149.3, 146.0, 122.6, 119.0, 116.9, 106.7, 102.4, 101.5, 99.1, 62.8, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.09. HRMS (ESI-TOF, *m/z*): $[M+H]^+$ calcd. for C₁₄H₁₁F₃NO₅ 330.0589, found: 330.0593.

Ethyl 4-hydroxy-2-(perfluoroethyl)quinoline-3-carboxylate (8f): white solid (80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, J = 8.3, 0.9 Hz, 1H), 8.01 (t, J = 14.2 Hz, 1H), 7.90 – 7.78 (m, 1H), 7.66 (t, J = 7.3 Hz, 1H), 4.55 – 4.48 (m, 2H), 1.46 (q, J = 7.3 Hz, 3H). ¹³CMR (101 MHz, CDCl₃) δ 169.1, 167.8, 133.0, 129.4, 128.3, 123.4, 120.6, 119.9, 117.6, 113.0, 112.0, 62.8, 51.0, 12.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.99, -107.46. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₄H₁₁F₅NO₃ 336.0659, found: 336.0662.

Ethyl 6-*chloro-4-hydroxy-2-(perfluoroethyl)quinoline-3-carboxylate* (**8***g*): white solid (82% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.73 (s, 1H), 8.31 (d, J = 2.3 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.78 (dd, J = 8.9, 2.3 Hz, 1H), 4.53 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 168.8, 167.2, 144.9, 134.7, 133.9, 131.4, 122.5, 121.3, 120.2, 117.3, 112.0, 111.7, 63.2, 13.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.97, -107.42. HRMS (ESI-TOF, *m/z*): $[M+H]^+$ calcd. for C₁₄H₁₀ClF₅NO₃ 370.0269, found: 370.0266. *Ethyl* 6-*chloro-2-(difluoromethyl)-4-hydroxyquinoline-3-carboxylate* (**8***h*): white solid (85% yield). ¹H NMR (400 MHz, DMSO) δ 12.58 (s, 1H), 8.02 (d, J = 2.1 Hz, 1H), 7.87 – 7.81 (m, 1H), 7.79 (dd, J = 8.9, 2.5 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H).¹³CMR (101 MHz, DMSO) δ 172.2, 164.8, 133.7, 130.1, 126.9, 124.4, 122.2, 114.1, 112.7, 110.4, 61.6, 30.8, 14.4. ¹⁹F NMR (376 MHz, DMSO) δ -117.80, -117.94. HRMS

(ESI-TOF, m/z): $[M+H]^+$ calcd. for $C_{12}H_{10}ClF_2NO_3$ 301.0317, found: 301.0321.

Ethyl 2-(trifluoromethyl)quinoline-3-carboxylate (9a): white solid (86% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.25 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.93 – 7.87 (m, 1H), 7.74 (dd, J = 8.0, 7.2 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 165.5, 147.0, 140.1, 132.3, 130.1, 129.5, 128.1, 124.2, 119.8, 116.6, 106.3, 62.5, 13.9.¹⁹F NMR (376 MHz, CDCl₃) δ -63.91. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₃H₁₁F₃NO₂ 270.0742, found: 270.0739.

Ethyl 6-bromo-2-(trifluoromethyl)quinoline-3-carboxylate (**9b**): white solid (90% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.14 – 8.09 (m, 2H), 7.96 (ddd, J = 9.0, 2.1, 1.0 Hz, 1H), 4.47 (qd, J = 7.2, 0.9 Hz, 2H), 1.43 (td, J = 7.2, 0.8 Hz, 3H). ¹³CMR (101 MHz, CDCl₃) δ 165.1, 145.4, 138.9, 135.9, 131.7, 130.1, 128.5, 124.9, 124.0, 122.0, 119.4, 62.7, 13.9.¹⁹F NMR (376 MHz, CDCl₃) δ -64.06. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₃H₁₀BrF₃NO₂ 347.9847, found: 347.9847.

Methyl 2-(trifluoromethyl)quinoline-3-carboxylate (9c): white solid (87% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.25 (d, J = 8.5 Hz, 1H), 7.99 – 7.87 (m, 2H), 7.74 (dd, J = 8.1, 7.1 Hz, 1H), 4.01 (d, J = 1.0 Hz, 3H). ¹³CMR (101 MHz, CDCl₃) δ 165.8, 146.9,

140.2, 132.4, 130.1, 129.6, 128.2, 127.4, 123.7, 122.3, 119.7, 53.1.¹⁹F NMR (376 MHz, CDCl₃) δ -64.25. HRMS (ESI-TOF, *m*/*z*): [M+H]⁺ calcd. for C₁₂H₉F₃NO₂ 256.0585, found: 256.0588.

Methyl 2-(difluoromethyl)quinoline-3-carboxylate (9d): white solid (86% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.27 (d, J = 8.5 Hz, 1H), 7.99 – 7.85 (m, 2H), 7.73 – 7.66 (m, 1H), 4.02 (d, J = 0.9 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 165.4, 148.1, 140.9, 132.6, 130.1, 128.8, 128.5, 127.1, 113.6, 111.2, 108.8, 52.9.¹⁹F NMR (376 MHz, CDCl₃) -118.44, -118.58. HRMS (ESI-TOF, *m/z*): [M+H]⁺calcd. for C₁₂H₁₀F₂NO₂ 238.0680, found: 238.0676.

Ethyl 2-(difluoromethyl)quinoline-3-carboxylate (9e): white solid (88% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 0.7 Hz, 1H), 8.26 (dd, J = 8.5, 0.4 Hz, 1H), 7.95 (dd, J = 8.2, 1.2 Hz, 1H), 7.92 – 7.85 (m, 1H), 7.72 – 7.64 (m, 1H), 4.48 (q, J = 7.1 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 165.0, 148.0, 140.8, 132.4, 130.0, 128.8, 128.5, 128.4, 127.2, 113.7, 111.3, 62.1, 14.1.¹⁹F NMR (376 MHz, CDCl₃) -118.25, -118.40. HRMS (ESI-TOF, *m/z*): [M+H]⁺calcd. for C₁₃H₁₂F₂NO₂ 252.0836, found: 252.0840.

Ethyl 6-(difluoromethyl)-[1,3] dioxolo[4,5-g] quinoline-7-carboxylate (9f): white solid (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.65 – 8.60 (m, 1H), 7.53 – 7.47 (m, 1H), 7.14 (s, 1H), 6.18 (s, 2H), 4.45 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H). ¹³CMR (101 MHz, CDCl₃) δ 165.2, 153.3, 149.7, 147.1, 138.8, 124.8, 113.5, 111.1, 108.7, 106.3, 103.0, 102.4, 61.9, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) -117.81, -117.95. HRMS (ESI-TOF, *m/z*): [M+H]⁺calcd. for C₁₄H₁₂F₂NO₄ 296.0734, found: 296.0729.

Ethyl 6-(difluoromethyl)-[1,3]dioxolo[4,5-g]quinoline-7-carboxylate (9g): white solid (90% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.16 – 8.07 (m, 2H), 7.98 – 7.92 (m, 1H), 4.04 – 4.00 (m, 3H).¹³CMR (101 MHz, CDCl₃) δ 165.1, 150.8, 146.6, 139.8, 136.0, 131.6, 130.4, 128.2, 123.1, 113.4, 111.0, 53.0. ¹⁹F NMR (376 MHz, CDCl₃) -118.63, -118.77. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₃H₁₁BrF₂NO₂ 329.9941, found: 329.9936. *Ethyl 2-(perfluoroethyl)quinoline-3-carboxylate (9h):* colorless oil (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.21 (d, J = 8.5 Hz, 1H), 7.97 – 7.84 (m, 2H), 7.72 (t, J = 7.6 Hz, 1H), 4.46 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H).¹³CMR (101 MHz, CDCl₃) δ 166.1, 146.6, 139.2, 132.1, 130.2, 129.6, 128.0, 127.1, 125.5, 120.9, 120.5, 117.7, 62.5, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) -80.28, -108.88. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₄H₁₁F₅NO₂ 320.0710, found: 320.0707.

Ethyl 6-chloro-2-(perfluoroethyl)quinoline-3-carboxylate (9i): white solid (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.14 (t, J = 7.5 Hz, 1H), 7.92 (d, J = 2.3 Hz, 1H), 7.84 – 7.78 (m, 1H), 4.47 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H). ¹³CMR (101 MHz, CDCl₃) δ 165.7, 145.0, 144.6, 138.2, 135.8, 133.1, 131.7, 127.7, 126.5, 120.2, 117.3, 111.7, 62.7, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) -80.33, -109.03. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₄H₁₀ClF₅NO₂ 354.0320, found: 354.0317.

Phenyl(2-(trifluoromethyl)quinolin-3-yl)methanone (9j): white solid (70% yield). ¹H NMR

(400 MHz, CDCl₃) δ 8.32 – 8.25 (m, 2H), 7.94 – 7.88 (m, 2H), 7.83 (dd, J = 8.4, 1.2 Hz, 2H), 7.75 (dd, J = 8.1, 7.1 Hz, 1H), 7.65 (ddd, J = 8.8, 2.5, 1.2 Hz, 1H), 7.49 (td, J = 7.5, 1.2 Hz, 2H). ¹³CMR (101 MHz, CDCl₃) δ 193.5, 146.8, 144.6, 137.3, 136.3, 134.2, 131.9, 130.7, 130.2, 130.2, 129.6, 128.7, 127.9, 127.3, 122.5, 119.8.¹⁹F NMR (376 MHz, CDCl₃) -62.80. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₇H₁₁F₃NO 302.0793, found: 302.0796.

6-Bromo-2-(4-bromophenyl)-3-fluoroquinoline (**12a**): white solid (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.91 (m, 4H), 7.81 – 7.71 (m, 2H), 7.70 – 7.60 (m, 2H).¹³CMR (101 MHz, CDCl₃) δ 156.7, 154.0, 143.7, 134.2, 132.5, 131.8, 131.2, 130.8, 129.4, 128.8, 128.7, 124.5, 121.7, 119.1, 118.9.¹⁹F NMR (376 MHz, CDCl₃) -122.64, 122.67. HRMS (ESI-TOF, *m/z*): $[M+H]^+$ calcd. for C₁₅H₉Br₂FN 378.9008, found: 378.9012.

6-Bromo-2-(4-bromophenyl)-3-fluoroquinoline (**13a**): white solid (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.18 (m, 1H), 8.18 – 8.12 (m, 1H), 8.08 – 8.02 (m, 2H), 7.84 – 7.79 (m, 2H), 7.76 – 7.70 (m, 1H), 7.67 – 7.61 (m, 2H), 7.53 (ddd, J = 8.1, 5.7, 1.2 Hz, 1H).¹³CMR (101 MHz, CDCl₃) δ 156.0, 148.2, 138.5, 136.9, 131.9, 129.8, 129.7, 129.1, 127.5, 127.2, 126.5, 123.9, 118.5. HRMS (ESI-TOF, *m*/*z*): [M+H]⁺ calcd. for C₁₅H₁₁BrN 284.0075, found: 284.0079.

(*E*)-2-Styrylquinoline (**13b**): white solid (81% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.6 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.77 (dd, J = 9.8, 7.2 Hz, 1H), 7.73 – 7.62 (m, 5H), 7.56 – 7.46 (m, 2H), 7.43 – 7.38 (m, 2H), 7.35 – 7.30 (m, 1H). ¹³CMR (101 MHz, CDCl₃) δ 156.0, 148.3, 136.5, 136.3, 134.4, 132.5, 132.4, 132.1, 132.0, 129.7, 129.2, 128.8, 128.7, 128.6, 127.5, 127.3, 127.2, 126.1, 119.2. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₇H₁₄N 232.1126, found: 232.1130.

(*E*)-2-(4-Methylstyryl)quinoline (13c): white solid (78% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 16.9, 8.6 Hz, 2H), 7.77 (d, J = 8.1 Hz, 1H), 7.73 – 7.63 (m, 3H), 7.54 (d, J = 7.9 Hz, 2H), 7.48 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.36 (d, J = 16.3 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³CMR (101 MHz, CDCl₃) δ 156.2, 148.3, 138.7, 137.5, 136.2, 134.4, 133.7, 129.7, 129.5, 129.2, 128.7, 128.0, 127.5, 127.3, 127.2, 126.0, 119.2. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₈H₁₆N 246.1283, found: 246.1279.

6-*Bromo-2-propylquinoline* (**13***d*): white solid (80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 16.9, 8.6 Hz, 2H), 7.77 (d, J = 8.1 Hz, 1H), 7.73 – 7.63 (m, 3H), 7.54 (d, J = 7.9 Hz, 2H), 7.48 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.36 (d, J = 16.3 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³CMR (101 MHz, CDCl₃) δ 163.3, 146.3, 135.3, 134.7, 132.8, 130.4, 129.5, 122.2, 119.4, 41.1, 23.1, 13.9.HRMS (ESI-TOF, *m/z*): $[M+H]^+$ calcd. for C₁₂H₁₃BrN 250.0231, found: 250.0226.

6-Bromo-2-(trifluoromethyl)quinoline (**13e**): white solid (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.6 Hz, 1H), 8.08 (dd, J = 8.9, 3.3 Hz, 2H), 7.88 (dd, J = 9.0, 2.2 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H). ¹³CMR (101 MHz, CDCl₃) δ 148.5, 145.7, 137.1, 134.4, 131.7, 129.8, 129.7, 122.9, 117.7, 117.7. ¹⁹F NMR (376 MHz, CDCl₃) -67.65. HRMS (ESI-TOF, *m/z*): $[M+H]^+$ calcd. for C₁₀H₆BrF₃N 275.9636, found: 275.9640.

6-Bromo-2-(difluoromethyl)quinoline (**13***f*): white solid (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.6 Hz, 1H), 8.03 (dd, J = 16.6, 5.5 Hz, 2H), 7.84 (dd, J = 9.0, 2.2 Hz, 1H), 7.74 (d, J = 8.6 Hz, 1H), 6.75 (t, J = 55.2 Hz, 1H).¹³CMR (101 MHz, CDCl₃) δ 153.1, 145.7, 136.8, 133.9, 131.4, 129.6, 122.1, 117.7, 117.7, 114.4. ¹⁹F NMR (376 MHz, CDCl₃) -114.45, -114.60. HRMS (ESI-TOF, *m*/*z*): [M+H]⁺ calcd. for C₁₀H₆BrF₃N 257.9730, found: 275.9727.

Diethyl (2-methylquinolin-3-yl)phosphonate (17a): white solid (79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 16.3 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.85 (dd, J = 8.1, 0.5 Hz, 1H), 7.77 (ddd, J = 9.6, 7.0, 1.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 4.29 – 4.06 (m, 4H), 2.92 (s, 3H), 1.34 (dt, J = 5.0, 3.8 Hz, 6H).¹³CMR (101 MHz, CDCl₃) δ 158.9, 148.8, 144.7, 131.8, 128.4, 126.6, 125.2, 122.2, 120.3, 62.5, 62.4, 25.1, 16.3, 16.3. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₄H₁₉NO₃P 280.1103, found: 280.1099.

11H-Indeno[*1*,*2-b*]*quinolin-11-one* (*18a*): white solid (80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.15 – 8.06 (m, 2H), 7.90 – 7.80 (m, 2H), 7.79 – 7.72 (m, 1H), 7.71 – 7.64 (m, 1H), 7.56 – 7.48 (m, 2H). ¹³CMR (101 MHz, CDCl₃) δ 190.9, 162.1, 150.6, 143.9, 137.5, 135.6, 132.5, 132.1, 131.6, 130.5, 129.8, 127.7, 127.2, 127.1, 124.2, 121.8. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₆H₁₀NO 232.0762, found: 232.0759.

6H-Chromeno[*4*,*3-b*]*quinolin-6-one* (**18b**): off-white solid (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 8.36 – 8.30 (m, 1H), 8.13 – 8.04 (m, 2H), 7.94 – 7.85 (m, 1H), 7.83 – 7.76 (m, 1H), 7.64 – 7.57 (m, 2H), 7.44 – 7.38 (m, 1H). ¹³CMR (101 MHz, CDCl₃) δ 178.1, 157.5, 156.2, 149.4, 140.0, 136.1, 133.5, 129.6, 128.1, 127.0, 126.4, 126.2, 124.4, 120.9, 118.4, 116.5. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₁₆H₁₀NO₂ 248.0712, found: 248.0716.

4. NMR Spectra of Products

. . .

100 90 f1 (ppm)

. .

S 17

-80 -90 f1 (ppm)

-70

-60

30 20

10 0

-20 -30 -40 -50

-10

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

S 38

9.0

8.5

8.0

. 7.5 . 7.0 6.5

6.0

5.5

5.0

4.5 f1 (ppm) 4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

5. NMR Spectra of Products

. .

100 90 f1 (ppm)

. .

S 71

-80 -90 f1 (ppm)

-70

-60

30 20

10 0

-20 -30 -40 -50

-10

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

S 100

S 105

5. Green chemistry metrics analysis

The following formulae were used for calculating Atom Economy (AE), Atom Efficiency (AEf), Carbon Efficiency (CE), Reaction Mass Efficiency (RME), Optimum Efficiency (OE), Mass Productivity (MP), Mass Intensity (MI) and Process Mass Intensity (PMI), E factor, Solvent and Water Intensity (SI and WI).⁵⁻¹³

$$AE = \frac{Molecular \ weight \ of \ product}{Total \ molecular \ weight \ of \ reactants} X \ 100$$

$$AEf = AE \ X \ yield\%$$

$$CE = \frac{Amount \ of \ carbon \ in \ the \ product}{Total \ carbon \ present \ in \ reactants} X \ 100$$

$$RME = \frac{Mass \ of \ isolated \ product}{Total \ mass \ of \ reactants} X \ 100$$

$$OE = \frac{RME}{AE} X \ 100$$

$$OE = \frac{RME}{AE} X \ 100$$

$$MI = \frac{Total \ mass \ of \ input \ material \ in \ a \ process \ or \ process \ step}{Mass \ of \ product}$$

$$PMI = \frac{Total \ mass \ of \ input \ material \ in \ the \ whole \ process}{Mass \ of \ product}$$

$$PMI = \frac{Total \ mass \ of \ solvents \ excl. \ water \ in \ the \ whole \ process}{Mass \ of \ product}$$

$$MP = \frac{1}{PMI} X \ 100$$

$$E \ Factor = PMI - 1$$

$$SI = \frac{Total \ mass \ of \ water \ used \ in \ the \ whole \ process}{Mass \ of \ product}$$

Mass of product

5.1. Published synthetic method - Process A (I. P. J. Hoglund, S. Silver, M. T. Engstrom,
H. Salo, A. Tauber, H. K. Kyyronen, P. Saarenketo, A. M. Hoffren, K. Kokko, K.
Pohjanoksa, J. Sallinen, J. M. Savola, S. Wurster and O. A. Kallatsa, *J. Med. Chem.*, 2006,
49, 6351-6363)

This is a three-step synthesis, but only two separation steps. Reported procedures for the synthesis of compound **4a** do not always contain all the required information; therefore, some realistic assumptions were used where appropriate and are italicized in the calculations given below. Drying agents, when used, were not included in the calculations.

Step 1: Synthesis of diethyl 2-(1-ethoxyethylidene)malonate (22)

Experimental procedure: A solution of 21 (1.59 mL, 10.5 mmol), triethylorthoacetate (5.61 mL, 30.6 mmol), Ac₂O (35 μ L, 0.32 mmol), and ZnCl₂ (0.4 mg, cat.) was heated in a reaction vessel equipped with a distillation bridge and a thermometer. At a vapor temperature of 70 °C, side products formed in the reaction and started to distill out. Ac₂O (35 μ L) was added three times every 30 min. After 4 h of heating, the reaction mixture was allowed to cool to room temperature. The reaction mixture was evaporated gently under reduced pressure to remove low-volatile starting materials and side products. The residue was purified by flash chromatography (hexane/EtOAc= 3:1, *total 85mL*) to obtain 1.70 g (70%) of **22** as a yellowish oil.

Materials used for metrics calculations: compound 21 (1.26 g, 10.5 mmol), triethylorthoacetate (4.95 g, 30.6 mmol), Ac_2O (0.25 g, 2.46 mmol), $ZnCl_2$ (0.4 mg, 0.003 mmol), hexane/EtOAc(85 mL, 62.00 g), compound 22 (1.70g, 7.38 mmol).

AE
$$(22) = \frac{230.26}{120.17 + 162.03} \times 100 = 81.54$$

AEf $(22) = \frac{81.54}{100} \times 70 = 57.08$
CE $(22) = \frac{11 \times 30.60}{7 \times 10.5 + 8 \times 30.60} \times 100 = 25.51$
RME $(22) = \frac{1.7}{1.26 + 4.95} \times 100 = 27.30$
OE $(22) = \frac{27.30}{81.54} \times 100 = 33.48$
MI $(22) = \frac{1.26 + 4.97 + 0.25 + 0.0004 + 62.00}{1.7} = 40.29$
MP $(22) = \frac{100}{40.29} = 2.48$
E Factor $(22) = 40.29 - 1 = 39.29$
SI $(22) = \frac{62.00}{1.7} = 36.48$
WI $(22) = \frac{0}{1.7} = 0$

Steps 2&3: Synthesis of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate (4a)

Experimental procedure: A solution of compound **22** (2.76 g, 12 mmol) and aniline (1.09 mL, 12 mmol) in pyridine (20 mL) was refluxed for 2 h. The reaction mixture was evaporated in vacuo and the residue was mixed with Ph₂O (10 ml) and again refluxed for 1 h. Et₂O (10 mL) was added to the cooled reaction mixture. The formed precipitate was filtered and washed with plenty of Et₂O (*assuming use of 5 mL*), to afford 1.03 g (37%) of compound **4a** as colorless crystals.

Materials used for metrics calculations: compound 22 (2.76 g, 12 mmol), aniline (1.11 g, 12 mmol), pyridine (20 mL, 19.56g), Et₂O (15 mL, 10.50 g), Ph₂O (10 mL, 10.73 g), compound **4a** (1.03g, 4.45 mmol).

AE
$$(4a) = \frac{231.25}{230.26 + 93.13} \times 100 = 71.51$$

AEf $(4a) = \frac{71.51}{100} \times 37 = 26.46$
CE $(4a) = \frac{13 \times 4.45}{11 \times 12 + 6 \times 12} \times 100 = 28.41$
RME $(4a) = \frac{1.03}{2.76 + 1.11} \times 100 = 26.57$
OE $(4a) = \frac{26.57}{71.51} \times 100 = 37.15$
MI $(4a) = \frac{2.76 + 1.11 + 19.56 + 10.73 + 10.5}{1.03} = 148.76$
MP $(4a) = \frac{100}{148.75} = 0.67$
E Factor $(4a) = 43.37 - 1 = 147.76$
SI $(4a) = \frac{19.56 + 10.73 + 10.5}{1.03} = 40.48$
WI $(4a) = \frac{0}{1.03} = 0$

Cumulative metrics for compound 4a:

AE (4a cumulative) =
$$\frac{231.25}{160.17 + 162.23 + 93.13} \times 100 = 56$$

AEf (4a cumulative) = $\frac{61.32}{100} \times 25.9 = 16$
CE (4a cumulative) = $\frac{13 \times 4.45}{(7 \times 10.5 + 8 \times 30.60) \times \frac{12}{7.38} + 6 \times 11.96} \times 100$
= 10
RME (4a cumulative) = $\frac{1.03}{\frac{2.76}{0.273} + 1.11} \times 100 = 9.0$
OE(4a cumulative) = $\frac{9}{56}X \ 100 = 16$
MI (4a cumulative) = $\frac{2.76 \times 40.29 + 1.11 + 19.56 + 10.73 + 10.5}{1.03} = 149$

MP (4a cumulative) = $\frac{100}{149}$ = 0.7 E Factor (4a cumulative) = 149 - 1 = 148 SI (4a cumulative) = $\frac{62.0 \times \frac{12}{7.38} + 19.56 + 10.73 + 10.5}{1.03}$ = 138 WI (4a cumulative) = $\frac{0}{1.03}$ = 0

5.2. Published synthetic method - Process B (V. Goncalves, J. A. Brannigan, D. Whalley, K. H. Ansell, B. Saxty, A. A. Holder, A. J. Wilkinson, E. W. Tate and R. J. Leatherbarrow, *J. Med. Chem.*, 2012, 55, 3578-3582)

This is a two-step synthesis. Reported procedures for the synthesis of compound **4a** do not always contain all the required information; therefore, some realistic assumptions were used where appropriate and are italicized in the calculations given below. Drying agents, when used, were not included in the calculations.

Step 1: Synthesis of 2*H*-benzo[d][1,3]oxazine-2,4(1*H*)-dione (25)

Experimental procedures, A mixture of **24** (0.84 g, 6.1 mmol) and triphosgene (2.67g, 9.0 mmol) in dry THF (2 mL) was heated at 40-50 °C for 3 hr. the solution was concentrated and n-hexane(6 mL) was added. The title compound **25** was obtained as a beige solid (1.0 g, 82%)

Materials used for metrics calculations: compound 24 (0.84g, 6.1 mmol), triphosgene (2.67g,

2.0 mmol), THF (2 mL, 1.78g), n-hexane (6 mL, 4.03g), compound 25 (0.82g, 5.00 mmol).

AE
$$(25) = \frac{163.13}{137.14 + 296.73} \times 100 = 37.60$$

AEf $(25) = \frac{37.60}{100} \times 82 = 58$
CE $(25) = \frac{8 \times 5}{3 \times 9 + 7 \times 6.1} \times 100 = 57.41$
RME $(25) = \frac{0.82}{2.67 + 0.84} \times 100 = 23.27$
OE $(25) = \frac{23.27}{37.60} \times 100 = 61.88$
MI $(25) = \frac{4.032 + 1.78 + 2.67 + 0.84}{0.82} = 11.37$
MP $(25) = \frac{100}{11.37} = 8.80$
E Factor $(25) = 11.37 - 1 = 10.37$
SI $(25) = \frac{4.032 + 1.78}{0.82} = 87.55$
WI $(25) = \frac{0}{0.82} = 0$

Step 2: Synthesis of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate (4a)

Experimental procedures: Ethylacetoacetate **3a** (6.50 g, 50 mmol) was dissolved in 100 mL of *N*,*N*-dimethylacetamide and sodium hydride (1.20 g, 50 mmol) was added portionwise under stirring over 10 min. To this solution was added a mixture of isatoic anhydride **25** (9.79 g, 60 mmol) and *N*,*N*-dimethylacetamide (75 mL) followed by stirring at 120 °C for 20 min. The solution was concentrated under reduced pressure, followed by addition of water (500 mL). The suspension was submitted to ultrasonic waves and the resulting precipitate was collected by filtration, washed with water and dried. Compound 4a as an off-white powder (7.80 g, 67%).

Materials used for metrics calculations: Ethylacetoacetate **3a** (6.50 g, 50 mmol), N, Ndimethylacetamide (175 mL, 163.97g), sodium hydride (1.20 g, 50 mmol), compound **25** (9.79 g, 60 mmol), water (500 mL, 500g), compound **4a** (7.8g, 33.73 mmol).

AE
$$(4a) = \frac{231.25}{163.13 + 130.14} \times 100 = 78.85$$

AEf $(4a) = \frac{78.85}{100} \times 67 = 52.83$
CE $(4a) = \frac{13 \times 33.73}{6 \times 50 + 8 \times 60} \times 100 = 56.22$
RME $(4a) = \frac{7.8}{6.50 + 9.79} \times 100 = 47.87$
OE $(4a) = \frac{47.87}{78.85} X \ 100 = 60.71$
MI $(4a) = \frac{500 + 1.2 + 163.97 + 9.79 + 6.5}{7.8} = 87.37$
MP $(4a) = \frac{100}{87.37} = 1.14$
E Factor $(4a) = 87.37 - 1 = 86.37$
SI $(4a) = \frac{163.98}{7.8} = 21.02$
WI $(4a) = \frac{500}{7.8} = 64.10$

Cumulative metrics for compound 4a:

MP (4a cumulative) = $\frac{100}{100.38} = 1.0$ E Factor (4a cumulative) = 100 - 1 = 99SI (4a cumulative) = $\frac{5.812 \times \frac{60}{5.0} + 163.98}{7.8} = 30$ WI (4a cumulative) = $\frac{500}{7.8} = 64$

5.3. Current Method, Process C (4a as an example)

5.3.1. One-pot process

This is a one-pot synthesis with only one step of separation for the final product.

General procedure for the synthesis of **4a.** To a solution of 2-azidobenzaldehyde **1a** (73.5 mg, 0.50 mmol), compound **2a** (82 mg, 0.55 mmol), Et₃N (60.6 mg, 0.5 mmol) and Ph₃P (157.8mg, 0.6mmol) in 2.5 mL of CH₃CN was heated at 95 °C for 12 h. The reaction mixture upon the completion of the reaction as monitored by LC-MS. The reaction mixture was concentrated and washed with plenty of Et₂O (*assuming use of total 2.0 mL*) for three times, afford 103.5 mg (90 %) of compound **4a**.

Materials used for metrics calculations: 2-azidobenzaldehyde **1a** (73.5 mg, 0.50 mmol), compound **2a** (82 mg, 0.55 mmol), Et₃N (60.6 mg, 0.5 mmol) and Ph₃P (157.8 mg, 0.6 mmol), CH₃CN (2.5 mL, 1965 mg), Et₂O (2.0 mL, 1400 mg), and compound **4a** (103.5 mg, 0.45 mmol).

AE
$$(4a) = \frac{231.25}{147.14 + 148.13} \times 100 = 78$$

AEf $(4a) = \frac{78}{100} \times 90 = 70$
CE $(4a) = \frac{13 \times 0.45}{7 \times 0.5 + 6 \times 0.55} \times 100 = 86$
RME $(4a) = \frac{103.5}{82 + 73.5} \times 100 = 67$

OE
$$(4a) = \frac{66.56}{78.32} \times 100 = 85$$

PMI $(4a) = \frac{73.5 + 82 + 1965 + 1400 + 60.6 + 157.8}{103.5} = 36$
MP $(4a) = \frac{100}{36.12} = 2.8$
E Factor $(4a) = 36.12 - 1 = 35$
SI $(4a) = \frac{1965 + 1400 + 60.6}{103.5} = 33$
WI $(4a) = \frac{0}{103.5} = 0$

5.3.2 Two-step process (including the synthesis of 2-azidobenzaldehyde)

This is a two-step synthesis. Reported procedures for the synthesis of compound **4a** do not always contain all the required information; therefore, some realistic assumptions were used where appropriate and are italicized in the calculations given below. Drying agents, when used, were not included in the calculations.

Step 1: Synthesis of 2-azidobenzaldehyde (1a)

Experimental procedure: A mixture of **26** (1.51 g, 10 mmol) and NaN₃ (1.30g, 20 mmol) in HMPA (15 mL) was stirred at 25 °C for 36 hr. The reaction mixture was poured onto water (30 mL) and then stirred at 0-5 °C, the crude product was filtrated and afforded off-yellow solid 1a (1.47g, 100%)

Materials used for metrics calculations: compound **26** (1.51g, 10 mmol), NaN₃ (1.30g, 20 mmol), HMPA (15 mL, 15.45g), water (30 mL, 30g), compound **1a** (1.47 g, 10 mmol).

AE
$$(1a) = \frac{147.14}{151.12+65} \times 100 = 68.08$$

AEf $(1a) = \frac{68.08}{100} \times 100 = 68.08$
CE $(1a) = \frac{7 \times 10}{7 \times 10} \times 100 = 100$
RME $(1a) = \frac{1.47}{1.51+1.30} \times 100 = 52.31$
OE $(1a) = \frac{52.31}{68.08} \times 100 = 76.84$
MI $(1a) = \frac{1.51+1.30+15.45+30}{1.47} = 32.83$
MP $(1a) = \frac{100}{32.83} = 3.05$
E Factor $(1a) = 32.83 - 1 = 31.83$
SI $(1a) = \frac{15.45}{1.47} = 10.51$
WI $(1a) = \frac{30}{1.47} = 20.41$

Step 2: Synthesis of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate (4a)

General procedure for the synthesis of **4a.** To a solution of 2-azidobenzaldehyde **1a** (73.5 mg, 0.50 mmol), compound **2a** (82 mg, 0.55 mmol), Et₃N (60.6 mg, 0.5 mmol) and Ph₃P (157.8mg, 0.6mmol) in 2.5 mL of CH₃CN was heated at 95 °C for 12 h. The reaction mixture upon the completion of the reaction as monitored by LC-MS. The reaction mixture was concentrated and washed with plenty of Et₂O (*assuming use of total 2.0 mL*) for three times, afford 103.5 mg (90 %) of compound **4a**.

Materials used for metrics calculations: 2-azidobenzaldehyde **1a** (73.5 mg, 0.50 mmol), compound **2a** (82 mg, 0.55 mmol), Et₃N (60.6 mg, 0.5 mmol) and Ph₃P (157.8 mg, 0.6 mmol), CH₃CN (2.5 mL, 1965 mg), Et₂O (2.0 mL, 1400 mg), and compound **4a** (103.5 mg, 0.45 mmol).

AE
$$(4a) = \frac{231.25}{147.14 + 148.13} \times 100 = 78$$

AEf $(4a) = \frac{78}{100} \times 90 = 70$
CE $(4a) = \frac{13 \times 0.45}{7 \times 0.5 + 6 \times 0.55} X 100 = 86$
RME $(4a) = \frac{103.5}{82 + 73.5} \times 100 = 67$
OE $(4a) = \frac{66.56}{78.32} \times 100 = 85$
PMI $(4a) = \frac{73.5 + 82 + 1965 + 1400 + 60.6 + 157.8}{103.5} = 36$
MP $(4a) = \frac{100}{36.12} = 2.8$
E Factor $(4a) = 36.12 - 1 = 35$
SI $(4a) = \frac{1965 + 1400 + 60.6}{103.5} = 33$
WI $(4a) = \frac{0}{103.5} = 0$

Cumulative metrics for compound 4a:

$$\begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ &$$

AE (4a cumulative) =
$$\frac{231.25}{151.12 + 65 + 148.13} \times 100 = 63.5$$

AEf (4a cumulative) = $\frac{41.00}{100} \times 90 = 57$
CE (4a cumulative) = $\frac{13 \times 0.45}{7 \times 0.5 + 6 \times 0.55} \times 100 = 86$
RME (4a cumulative) = $\frac{103.5}{\frac{73.5}{0.5231} + 82} \times 100 = 47$
OE (4a cumulative) = $\frac{47}{63.5} \times 100 = 74$
PMI (4a cumulative) = $\frac{73.5 \times 33 + 82 + 1965 + 1400 + 60.6 + 157.8}{103.5} = 59$
MP (4a cumulative) = $\frac{100}{59} = 1.7$

E Factor (4a cumulative) = 59 - 1 = 58

SI (4a cumulative) =
$$\frac{15450 \times \frac{0.5}{10} + 1965 + 1400 + 60.6}{103.5} = 41$$
WI (4a cumulative) =
$$\frac{30000 \times \frac{0.5}{10}}{103.5} = 14.5$$

6. References

- D. J. C. Constable, A. D. Curzons and V. L. Cunningham, *Green Chem.*, 2002, 4, 521– 527.
- C. Jiménez-González, C. S. Ponder, Q. B. Broxterman and J. B. Manley, Org. Process Res. Dev., 2011, 15, 912–917.
- J. J. Song, R. P. Frutos, T. Tampone and C. H. Senanayake, in *Comprehensive Chirality, Volume 9: Industrial Applications of Asymmetric Synthesis*, eds. E. M. Carreira, H. Yamamoto, Elsevier Science, Amsterdam, 2012, pp. 46–72.
- N. J. Willis, C. A. Fisher, C. M. Alder, A. Harsanyi, L. Shukla, J. P. Adams and G. Sandford, *Green Chem.*, 2016, 18, 1313–1318.
- 5) F. Roschangar, R. A. Sheldon and C. H. Senanayake, Green Chem., 2015, 17, 752–768.
- C. R. McElroy, A. Constantinou, L. C. Jones, L. Summerton and J. H. Clark, *Green Chem.*, 2015, 17, 3111–3121.