Supporting Information

Facile in-situ preparation of high-performance epoxy vitrimers from renewable resources and its application in nondestructively recyclable carbon-fiber composites

Sheng Wang, Songqi Ma,* Qiong Li,* Xiwei Xu, Binbo Wang, Wangchao Yuan, Shenghua Zhou, Jin Zhu,*

a Key laboratory of bio-based polymeric materials technology and application of Zhejiang province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. E-mail: masongqi@nimte.ac.cn, jzhu@nimte.ac.cn; Fax: 86-0574-86685186; Tel: 86-0574-87619806

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

c School of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China

d School of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
Fig. S1 1H NMR of MB
Fig. S2 13C NMR of MB
Fig. S3 DSC curves of MB

m.p. = 102.6 °C
Fig. S4 TOF-Mass spectra of MB
Fig. S5 Peak fitting of the FT-IR spectrum of MB-PACM from 1550 cm\(^{-1}\) to 1755 cm\(^{-1}\) wavenumber.
Fig. S6 Digital photo of the MB-PACM before and after DMA test.
Fig. S7 a) The degradation process of MB-PACM in methanol, water, 0.1M HCL aq. solution and 1M HCL aq. solution. b) the degraded product of acidic aqueous solution dissolved in methanol
Fig. S8 Digital photo of the recycled CF
<table>
<thead>
<tr>
<th>Sample</th>
<th>Hardness (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original MB-PACM</td>
<td>198±26</td>
</tr>
<tr>
<td>MB-PACM After 170 °C DMA test</td>
<td>218±4</td>
</tr>
<tr>
<td>MB-PACM After 240 °C DMA test</td>
<td>271±18</td>
</tr>
</tbody>
</table>