Supporting information

Aerobic oxidation of C-H bond under ambient conditions using highly dispersed Co over highly porous N-doped carbon

Renfeng Nie,*, ^{a, b} Jingwen Chen,^b Minda Chen,^b Zhiyuan Qi,^b Tian-Wei Goh,^b Tao Ma,^c Lin Zhou,^c Yuchen Pei,^b Wenyu Huang^{*, b, c}

^a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China.
^b Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
^c Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.
E-mail: refinenie@163.com (N. Nie); whuang@iastate.edu (W. Huang);

Experimental section

Materials

All chemicals and solvents were obtained from commercial suppliers and used as received: $Zn(NO_3)_2 \cdot 6H_2O$ (99%, Sigma-Aldrich), $Co(NO_3)_2 \cdot 6H_2O$ (99%, Sigma-Aldrich), 2-methylimidazole (99%, Sigma-Aldrich), methanol (99%, Sigma-Aldrich), ethylbenzene (99%, Sigma-Aldrich), TBHP (70 wt. % in water, Sigma-Aldrich), ultrapure water (Millipore, 18.2 M Ω cm) was used throughout all experiments.

Characterization

Powder X-ray diffraction (PXRD) patterns of the samples were acquired by a STOE Stadi P powder diffractometer using Cu K α radiation (40 kV, 40 mA, λ =0.1541 nm). N₂ physisorption experiments were conducted by using Micromeritics 3 Flex surface characterization analyzer at 77 K. All the samples were activated at 150 °C for 12 h under vacuum (<10⁻⁵ torr) before measurements. Transmission electron microscopy (TEM) images were acquired by using a Tecnai G2 F20 electron microscope operated at 200 kV. Inductively coupled plasmon-mass spectrometry (ICP-MS, X Series II, Thermo Scientific) was performed to determine the actual metal content. Samples were digested by boiled aqua regia before ICP analysis. X-ray photoelectron spectroscopy

(XPS) spectra were measured by a PHI 5500 Multi-technique system (Physical Electronics, Chanhassen, MN) equipped with a monochromatized Al $K\alpha$ X-ray source (1486.6 eV). The binding energies were calibrated based on the C1s peak at 284.6 eV as a reference.

Fig. S1 XRD patterns of (a) ZIF-8, (b) Co₁Zn₉₉-ZIF and (c) ZIF-67.

Fig. S2 (a) Nitrogen sorption isotherms and (b) pore size distribution of Co_xZn_{100-x} -ZIF materials.

Tabl	e SI	the pore structure of	of Co ₂	$_{x}Zn_{1}$	00-2	ζ-Ζ	JF.	
~			ã			,		

Samples	$S_{BET} (m^2/g)$	V_{pore} (cm ³ /g)	$D_{p}(nm)$
ZIF-8	1410	0.83	<1

ZIF-67	1560	0.71	<1
Co ₁ Zn ₉₉ -ZIF	1450	0.87	<1
Co ₁ Zn ₉₉ -ZIF-800-Ar	610	0.40	<1,110
Co ₁₀ Zn ₉₀ -ZIF-800-Ar	350	0.51	-
ZIF-67-800-Ar	260	0.44	-
Co_1Zn_{99} -ZIF-800-H ₂	1090	0.89	1.2, 110
Co ₁ Zn ₉₉ -ZIF-900-H ₂	1100	0.88	1.3, 80
Co ₁ Zn ₉₉ -ZIF-700-H ₂	830	0.55	<1,110
Co_1Zn_{99} -ZIF-600-H ₂	530	0.32	<1,110
Spent Co ₁ Zn ₉₉ -ZIF-800-H ₂	980	0.83	1.2, 80

Table S2 ICP-MS tests of different Co_xZn_{100-x}-ZIF materials.

Samples	Co content (wt %)	Zn content (wt %)
Co ₁ Zn ₉₉ -ZIF	0.24	25.09
Co1Zn99-ZIF-400-H2	0.28	26.13
Co ₁ Zn ₉₉ -ZIF-600-H ₂	0.54	24.02
Co ₁ Zn ₉₉ -ZIF-700-H ₂	0.78	11.45
Co ₁ Zn ₉₉ -ZIF-800-H ₂	0.93	6.24
Co ₁ Zn ₉₉ -ZIF-900-H ₂	1.21	2.82
ZIF-67	25.5	-
ZIF-67-800-Ar	41.85	-
Co ₅₀ Zn ₅₀ -ZIF-800-Ar	25.75	-
Co10Zn90-ZIF-800-Ar	5.59	-
Co ₅ Zn ₉₅ -ZIF-800-Ar	3.35	-
Co _{2.5} Zn _{97.5} -ZIF-800-Ar	1.23	-
Co ₁ Zn ₉₉ -ZIF-800-Ar	0.65	9.53
Co _{0.2} Zn _{99.8} -ZIF-800-Ar	0.17	-

Table S3 Elemental analysis of Co_xZn_{100-x}-ZIF catalysts.^a

Catalysts	Elemental percentage (at. %)					
	С	N	0	Zn	Co	
Co ₁ Zn ₉₉ -ZIF	62.9	26.4	2.4	8.3	-	
Co ₅ Zn ₉₅ -ZIF	63.0	26.1	3.3	7.4	0.23	
Co ₁ Zn ₉₉ -ZIF-800-H ₂	84.7	8.5	5.7	0.66	0.49	

^{*a*} Determined by XPS.

Fig. S3 TEM images of Co₁Zn₉₉-ZIF-800-H₂.

Fig. S4 XRD patterns of (a) ZIF-67-800-Ar, (b) $Co_{50}Zn_{50}$ -ZIF-800-Ar, (c) $Co_{10}Zn_{90}$ -ZIF-800-Ar, (d) Co_5Zn_{95} -ZIF-800-Ar, (e) $Co_{2.5}Zn_{97.5}$ -ZIF-800-Ar, (f) Co_1Zn_{99} -ZIF-800-Ar and (g) $Co_{0.2}Zn_{99.8}$ -ZIF-800-Ar.

Fig. S5 N1s XPS spectra of (a) Co_1Zn_{99} -ZIF-800-H₂, (b) Co_1Zn_{99} -ZIF and (c) Co_5Zn_{95} -ZIF.

Table S4 Selective oxidation of EB with TBHP over Ar-treated Co_xZn_{100-x} -ZIF catalysts.^a

\bigcirc	<u>`</u> →) —(^{он}			
Entry	Catalysts	Conv/%	СН	$\bigcirc \not \sim$	TOF/h ⁻ 1 <i>b</i>
1	ZIF-8	0.9	80.3	19.7	-
2	ZIF-67	22.3	10.5	89.5	1.3
3	Co ₁ Zn ₉₉ -ZIF	1.6	32.2	67.8	9.8
4	Co _{0.2} Zn _{99.8} -ZIF-800-Ar	1.5	8.4	91.6	13.0
5	Co ₁ Zn ₉₉ -ZIF-800-Ar	14.2	19.7	80.3	32.2
6	Co _{2.5} Zn _{97.5} -ZIF-800-Ar	21.3	19.3	78.1	25.5
7	Co ₅ Zn ₉₅ -ZIF-800-Ar	27.0	18.1	81.9	11.9
8	Co ₁₀ Zn ₉₀ -ZIF-800-Ar	38.2	18.5	81.5	10.1
9	Co ₅₀ Zn ₅₀ -ZIF-800-Ar	75.6	12.5	87.5	4.3
10	ZIF-8-800-Ar	4.1	15.5	84.5	-
11	ZIF-67-800-Ar	62.5	16.9	83.1	2.2
12	Co ₁ Zn ₉₉ -ZIF-800-H ₂	57.4	12.9	87.1	90.9
13	Co ₁ Zn ₉₉ -ZIF-400-H ₂	1.0	20.4	79.6	5.3
14	Co ₁ Zn ₉₉ -ZIF-600-H ₂	1.1	34.0	66.0	3.0
15	Co ₁ Zn ₉₉ -ZIF-700-H ₂	40.9	21.2	78.8	77.2
16	Co ₁ Zn ₉₉ -ZIF-900-H ₂	59.3	17.1	82.9	72.2

^a Reaction condition: EB (0.25mmol), catalyst (5mg), H₂O (3mL), TBHP (7 equiv.), 23°C, 2h.

^{*b*} TOF = moles of converted substrate per mole of Co atoms per hour.

Table 55 Selective oxid	lation c	DI EB WITH IB.	HP over Co_1	2n99-21F-800	$-H_2$ catalyst.
Catalysts	t/h	T/ºC	Conv/%	ОН	\mathbf{k}
Co ₁ Zn ₉₉ -ZIF-800-H ₂	4	60	97.4	5.1	94.9
Reaction condition: EB	(0.25n	nmol), catalys	$t (5mg), H_2O$	(3mL), TBE	IP (7 equiv.).

Table S5 Selective evidetion of EP with TPHP over Co. Zn. ZIE 800 H. estabut

Fig. S6 Recycle of Co_1Zn_{99} -ZIF-800-H₂ for selective oxidation of EB with O₂ at high conversion.

Reaction condition: EB (0.25mmol), catalyst (5mg), H_2O (3mL), TBHP (0.28 equiv.), O_2 (1 atm), 60°C, 4 h.

Fig. S7 XRD patterns of (a) fresh Co_1Zn_{99} -ZIF-800-H₂ and (b) 4 times reused Co_1Zn_{99} -ZIF-800-H₂.

Fig. S8 (a) Nitrogen sorption isotherms and (b) pore size distribution of fresh and 4 times reused Co_1Zn_{99} -ZIF-800-H₂.

catalyst	Reaction conditions	Product	Conv./	Selec./%	Ref.
			%		
Co ₁ Zn ₉₉ -ZIF-800-	60 °C, H ₂ O solvent, TBHP (28 mol%) +1	\bigcirc	57.0	93.5	This
H ₂	atm O ₂ , 0.008mol% Co.				study
Mn-N-C@SiO ₂	120 °C, solvent-free, 0.8 MPa O ₂ , 0.17mol%	\square	12.8	73.6	1
	Mn.				
Co-N-C/CeO ₂	120 °C, solvent-free, 0.8 MPa O ₂ , 0.35mol%	\square	33.1	74.8	2
	Co.				
Fe-N-C	25 °C, H ₂ O solvent, TBHP (2-6 equiv.), 0.6	\square	99	99	3
	mol% Fe.				
Au/LDH hybrid	140 °C, TBHP (3mol%) + 3 MPa O ₂ ,	\square	39	91	4
	0.002mol% Au.				
Co/AC-salen-400	80 °C, CH ₃ CN solvent, TBHP (0.4 equiv.),	\bigcirc	20.8	76.8	5
	0.76 mmol% Co.				
Pd@C-Glu _A -550	120 °C, 20 h, solvent-free, 1 atm air, 0.003	$\bigcirc \dashv$	14.2	94	6
	mmol% Pd.				
Ce _{0.5} Mn _{0.5} O _x @500	120 °C, CH ₃ CN solvent, 1 MPa O ₂ , 10 mmol	$\bigcirc +$	20.3	87	7
	substrate, 30 mg catalyst.				
GSCN-20	150 °C, CH ₃ CN solvent, 1 MPa O ₂ , 10 mmol	$\bigcirc +$	12	99	8
	substrate, 50 mg catalyst.				
N-doped graphene	80 °C, H_2O solvent, TBHP (3 equiv.), 1	\square	98.6	91.3	9
	mmol substrate, 10 mg catalyst.				

 Table S6 Representative works for the oxidation of ethylbenzene (EB) using heterogeneous catalysts.

3 Mass spectrogram of some ketones (aldehydes) (9 largest peaks based on EI)

References

- 1. Fu, L.; Zhao, S.; Chen, Y.; Liu, Z., Chemical Communications 2016, 52 (32), 5577-5580.
- 2. Chen, Y.; Zhao, S.; Liu, Z., *Physical Chemistry Chemical Physics* 2015, 17 (21), 14012-14020.

3. Liu, W.; Zhang, L.; Liu, X.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T., Journal of the American Chemical Society **2017**, *139* (31), 10790-10798.

4. Wang, L.; Zhu, Y.; Wang, J.-Q.; Liu, F.; Huang, J.; Meng, X.; Basset, J.-M.; Han, Y.; Xiao, F.-S., *Nature Communications* **2015**, *6*, 6957.

5. K. Nakatsuka, T. Yoshii, Y. Kuwahara, K. Mori and H. Yamashita, *Physical Chemistry Chemical Physics*, 2017, **19**, 4967-4974.

6. Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y., Nature Communications 2013, 4, 1593.

7. Zhang, P.; Lu, H.; Zhou, Y.; Zhang, L.; Wu, Z.; Yang, S.; Shi, H.; Zhu, Q.; Chen, Y.; Dai, S., *Nature Communications* **2015**, *6*, 8446.

8. Li, X.-H.; Chen, J.-S.; Wang, X.; Sun, J.; Antonietti, M., *Journal of the American Chemical Society* **2011**, *133* (21), 8074-8077.

9. Gao, Y.; Hu, G.; Zhong, J.; Shi, Z.; Zhu, Y.; Su, D. S.; Wang, J.; Bao, X.; Ma, D., *Angewandte Chemie International Edition* **2013**, *52* (7), 2109-2113.