Supporting Information

Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes

Fan Yang,†a Minjian Wang,†a Wei Liu b Bin Yang, a Ying Wang, *c Jun Luo, *b Yushu Tang, a

Liqiang Hou, a Yun Li, a Zihui Li, a Bing Zhang, a Wang Yang a and Yongfeng Li* a

a State Key Laboratory of Heavy oil Processing, China University of Petroleum (Beijing), Beijing 102249, China

b Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

c State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Fig. S1 (a) SEM image and (b) TEM image of MgO.
Fig. S2 (a) SEM image, (b) TEM image (inset: the corresponding SAED pattern), (c) HAADF-STEM image and (d) EDS mapping of Ni-N-C-600.
Fig. S3 (a) SEM image, (b) TEM image (inset: the SAED pattern of the region marked with red cycle), (c) HAADF-STEM image and (d) EDS mapping of Ni-N-C-800.
Fig. S4 (a) SEM image and (b) TEM image of Ni-NC (inset: the corresponding SAED pattern).
Fig. S5 Pore size distribution of Ni-N-C-600, Ni-N-C-700, and Ni-N-C-800.
Fig. S6 Raman spectra for Ni-N-C-600, Ni-N-C-700, Ni-N-C-800 and Ni-NC.
Fig. S7 XPS spectra of the Ni-N-C catalysts. (a) Survey spectra of different Ni-N-C, NiPc and Ni-NC, (b) N1s XPS spectra of Ni-NC, (c) N1s XPS spectra of NiPc.
Fig. S8 The corresponding EXAFS fitting curves of (a) Ni-N-C-600, (b) Ni-N-C-700 and (c) Ni-N-C-800.
Fig. S9 The GC-MS spectra of reduction reaction intermediate products.
Fig. S10 A proposed reaction mechanism for Ni-N-C-700 catalyze reduction of nitroarene
Fig. S11 The GC-MS spectra of hydrogenation of 4-nitrostyrene reaction. Reaction condition: 0.25 mmol nitrostyrene in 5 ml ethanol, 4 mg catalyst, 120 °C, 3Mpa H₂, 10 h.
Fig. S12 Catalytic stability and selectivity of Ni-N-C-700 catalysts. Reaction condition: 0.25 mmol 4-nitrochlorobenzene in 5 ml ethanol, 4 mg catalyst, 120 °C, 3Mpa H₂, 10h up to 3th recycle and 16h for 4th and 5th recycles.
Fig. S13 (a) SEM image, (b) TEM image (inset: the corresponding SAED pattern), (c) HAADF-STEM image and (d) EDS mapping of Ni-N-C-700 after recycle test.
Fig. S14 Schematic diagram of leaching test.
For NiN$_2$C$_2$-1 and NiN$_2$C$_2$-2, the former is more stable than the later with the lower energy of 0.50 eV, therefore, in the following nitrobenzene adsorption process, we only consider the case of NiN$_2$C$_2$-1 as a substrate.

$$E_f = E_{Ni-N_x} - E_{GN_x} - E_{Ni}$$
Fig. S16 Adsorption structures of nitrobenzene on Ni-Nₓ substrates. The gray, blue, light blue, red, and white balls stand for C, N, Ni, O, and H atoms, respectively.
Fig. S17 Co-adsorption structures of nitrobenzene molecules and H\(_2\) on the other optimized Ni-N\(_3\) structures. The gray, blue, light blue, red, and white balls stand for C, N, Ni, O, and H atoms, respectively.
Table S1. EXAFS data fitting results of Ni-N-C-600, Ni-N-C-700, and Ni-N-C-800 for Ni K edge.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Shell</th>
<th>N^a</th>
<th>R (Å)b</th>
<th>σ^2 (Å2 10$^{-3}$)c</th>
<th>ΔE_0 (eV)d</th>
<th>R factor (%)e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-N-C-600</td>
<td>Ni-N</td>
<td>3.7</td>
<td>1.86</td>
<td>6.9</td>
<td>-0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Ni-N-C-700</td>
<td>Ni-N</td>
<td>3.3</td>
<td>1.84</td>
<td>6.4</td>
<td>-5.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Ni-N-C-800</td>
<td>Ni-N</td>
<td>2.6</td>
<td>1.86</td>
<td>5.0</td>
<td>-9.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

[a] CN, coordination number; [b] R, bonding distance; [c] σ^2, Debye-Waller factor; [d] ΔE_0, inner potential shift; [e] R factor is used to value the goodness of the fitting.
Table S2. Ni content of catalysts

<table>
<thead>
<tr>
<th>sample</th>
<th>Ni-N-C-600</th>
<th>Ni-N-C-700</th>
<th>Ni-N-C-800</th>
<th>Ni-NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni[^a] wt%</td>
<td>4.9</td>
<td>4.4</td>
<td>3.6</td>
<td>10.3</td>
</tr>
<tr>
<td>Ni[^b] at%</td>
<td>1.006</td>
<td>0.993</td>
<td>0.62</td>
<td>2.42</td>
</tr>
<tr>
<td>Ni[^c] wt%</td>
<td>4.5</td>
<td>4.2</td>
<td>2.9</td>
<td>9.8</td>
</tr>
</tbody>
</table>

[a] Ni content (wt) of catalysts as measured by ICP-OES. [b] Ni content of catalysts as measured by XPS. [c] It was calculated based on the contents of C, N, O and Ni.
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>At%</th>
<th>pyridinic</th>
<th>Ni–N</th>
<th>pyrrolic</th>
<th>quaternary</th>
<th>oxidized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-N-C-600</td>
<td>10.6</td>
<td>3.65</td>
<td>2.40</td>
<td>2.29</td>
<td>1.12</td>
<td>1.37</td>
</tr>
<tr>
<td>Ni-N-C-700</td>
<td>8.5</td>
<td>2.54</td>
<td>1.95</td>
<td>1.34</td>
<td>1.57</td>
<td>1.1</td>
</tr>
<tr>
<td>Ni-N-C-800</td>
<td>5.2</td>
<td>1.52</td>
<td>1.14</td>
<td>0.78</td>
<td>0.91</td>
<td>0.85</td>
</tr>
<tr>
<td>Ni-NC</td>
<td>3.5</td>
<td>0.68</td>
<td>0.65</td>
<td>0.51</td>
<td>0.96</td>
<td>0.70</td>
</tr>
</tbody>
</table>

[a] It was calculated according to the peak area of different types of N.
Table S4. Evaluation of reaction conditions for the reduction of 4-chloronitrobenzenea

![Reaction Scheme](image.png)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>NaBH$_4$</th>
<th>T (h)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ni-N-C-600</td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>Ni-N-C-700</td>
<td>5 equiv</td>
<td>0.25</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>Ni-N-C-800</td>
<td></td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>

a Reaction conditions: 0.25 mmol 4-nitrochlorobenzene in 1 ml H$_2$O, 2mg Catalyst. b isolated yield.
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NaBH₄ (equiv)</th>
<th>Temp °C</th>
<th>Time (min)</th>
<th>TOF (h⁻¹)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-N-C-700</td>
<td>5</td>
<td>r.t.</td>
<td>15</td>
<td>667.7</td>
<td>This work</td>
</tr>
<tr>
<td>N-G</td>
<td>100</td>
<td>r.t.</td>
<td>21</td>
<td>-</td>
<td>Energy Environ. Sci. 2013, 6, 3260-3266,[¹]</td>
</tr>
<tr>
<td>N-CNTs</td>
<td>100</td>
<td>r.t.</td>
<td>48</td>
<td>-</td>
<td>Environ. Sci. Technol. 2014, 48, 10191-10197,[²]</td>
</tr>
<tr>
<td>N-G</td>
<td>10</td>
<td>r.t</td>
<td>300</td>
<td>-</td>
<td>Green Chem. 2016, 18, 4254-4262.[³]</td>
</tr>
<tr>
<td>N, P-G</td>
<td>100</td>
<td>35</td>
<td>2.5</td>
<td>-</td>
<td>J. Catal. 2018, 359, 233-241.[⁴]</td>
</tr>
<tr>
<td>S, N-CNTs</td>
<td>32</td>
<td>r.t.</td>
<td>10</td>
<td>-</td>
<td>Adv. Mater. 2016, 28, 10679-10683.[⁵]</td>
</tr>
<tr>
<td>AA/GO</td>
<td>750</td>
<td>r.t.</td>
<td>80</td>
<td>-</td>
<td>Nano Res. 2015, 8, 3992-4006.[⁶]</td>
</tr>
<tr>
<td>Ni/mZSM-5</td>
<td>4</td>
<td>r.t.</td>
<td>-</td>
<td>450</td>
<td>RSC Adv. 2015, 5, 34398-34414.[⁷]</td>
</tr>
<tr>
<td>Co@NC</td>
<td>-</td>
<td>r.t.</td>
<td>-</td>
<td>45</td>
<td>J. Mater. Chem. A 2016, 4, 7476-7482.[⁸]</td>
</tr>
<tr>
<td>Cu&Fe₅O₄-mC</td>
<td>10</td>
<td>r.t.</td>
<td>-</td>
<td>12.5</td>
<td>Green Chem. 2014, 16, 4198-4205.[⁹]</td>
</tr>
</tbody>
</table>
Table S6. Results of Hydrogenation of nitroarenes catalyzed by Ni-N-C-700

Catalyst, NaBH₄
\[\text{H₂O, r.t.} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reactant</th>
<th>Product</th>
<th>(T (h))</th>
<th>Yield(^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl-(\text{NH}_2)</td>
<td>Cl-(\text{NH}_2)</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Br-(\text{NO}_2)</td>
<td>Br-(\text{NH}_2)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>H(_3\text{C})-(\text{NO}_2)</td>
<td>H(_3\text{C})-(\text{NH}_2)</td>
<td>0.25 h</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>H(_3\text{CO})-(\text{NO}_2)</td>
<td>H(_3\text{CO})-(\text{NH}_2)</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

\[a\] Reaction conditions: 0.25 mmol 4-nitrochlorobenzene in 1 ml H₂O, 2mg Catalyst. \[b\] isolated yield
Table S7. Comparison of the hydrogenation of nitroarenes activity between Ni-N-C-700 and other nonprecious catalysts in literature.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reducing agent</th>
<th>Temp °C</th>
<th>P (MPa)</th>
<th>TOF (h(^{-1}))</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-N-C-700</td>
<td>H(_2)</td>
<td>120</td>
<td>3</td>
<td>8.4</td>
<td>This work</td>
</tr>
<tr>
<td>Ni-N-C-600</td>
<td>H(_2)</td>
<td>120</td>
<td>3</td>
<td>6.2</td>
<td>This work</td>
</tr>
<tr>
<td>Ni-N-C-800</td>
<td>H(_2)</td>
<td>120</td>
<td>3</td>
<td>6.4</td>
<td>This work</td>
</tr>
<tr>
<td>Ni–NiFe(_2)O(_4)</td>
<td>H(_2)</td>
<td>150</td>
<td>1</td>
<td>5</td>
<td>Green Chem. 2015, 17, 821-826.(^{[10]})</td>
</tr>
<tr>
<td>Ni/C(_{60})-Ac-B-4</td>
<td>H(_2)</td>
<td>110</td>
<td>2</td>
<td>7.8</td>
<td>Catal. Commun. 2017, 97, 83-87.(^{[11]})</td>
</tr>
<tr>
<td>Ni/C</td>
<td>H(_2)</td>
<td>140</td>
<td>2</td>
<td>10.6</td>
<td>Chem. Eng. J. 2015, 275, 36-44.(^{[12]})</td>
</tr>
<tr>
<td>Ni/NGr@C-800</td>
<td>H(_2)</td>
<td>110</td>
<td>5</td>
<td>2.5</td>
<td>Green Chem. 2016, 18, 3594-3599.(^{[13]})</td>
</tr>
<tr>
<td>Ni@SiCN</td>
<td>H(_2)</td>
<td>110</td>
<td>5</td>
<td>5</td>
<td>ChemCatChem. 2016, 8, 129-134.(^{[14]})</td>
</tr>
<tr>
<td>Ni-L/P-CNTs</td>
<td>H(_2)</td>
<td>140</td>
<td>2</td>
<td>1.5</td>
<td>Catal. Sci. Technol. 2013, 3, 982-991.(^{[16]})</td>
</tr>
<tr>
<td>Fe(_2)O(_3)-NC</td>
<td>H(_2)</td>
<td>120</td>
<td>5</td>
<td>1.9</td>
<td>Science 2013, 342, 1073-1076.(^{[17]})</td>
</tr>
<tr>
<td>Co(_3)O(_4)/CNT</td>
<td>H(_2)</td>
<td>110</td>
<td>3</td>
<td>6.2</td>
<td>Acs Catal. 2015, 5, 4783-4789.(^{[18]})</td>
</tr>
<tr>
<td>Co-Co(_3)O(_4)/CN</td>
<td>H(_2)</td>
<td>110</td>
<td>5</td>
<td>16.7</td>
<td>Nat. Chem. 2013, 5, 537-543.(^{[19]})</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Fresh</td>
<td>Recycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni wt%</td>
<td>4.4</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

