An environmentally benign multi-component reaction: Regioselective synthesis of fluorinated 2-aminopyridines using diverse properties of nitro group

Xuan-Xuan Du, Quan-Xing Zi, Yu-Meng Wu, Yi Jin,* Jun Lin* and Sheng-Jiao Yan*

Supporting Information

Table of Contents
X-ray Structure and Data of 4a & 5s ... S4
Figure S1. X-Ray crystal structure of 4a. .. S4
Table S1. Crystal data and structure refinement for 4a .. S4
Figure S2. X-Ray crystal structure of 5s. .. S5
Table S2. Crystal data and structure refinement for 5s .. S5
Figure S3. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4a S6
Figure S4. 13C NMR (125 MHz, DMSO-d6) spectra of compound 4a S7
Figure S5. 1H NMR (600 MHz, CDCl3) spectra of compound 4b S8
Figure S6. 13C NMR (150 MHz, CDCl3) spectra of compound 4b S9
Figure S7. 19F NMR (564 MHz, CDCl3) spectra of compound 4b S10
Figure S8. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4c S11
Figure S9. 13C NMR (125 MHz, DMSO-d6) spectra of compound 4c S12
Figure S10. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4d S13
Figure S11. 13C NMR (125 MHz, DMSO-d6) spectra of compound 4d S14
Figure S12. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4e S15
Figure S13. 13C NMR (125 MHz, DMSO-d6) spectra of compound 4e S16
Figure S14. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4f S17
Figure S15. 13C NMR (125 MHz, DMSO-d6) spectra of compound 4f S18
Figure S16. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4g S19
Figure S17. 13C NMR (125 MHz, DMSO-d6) spectra of compound 4g S20
Figure S18. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4h S21
Figure S19. 13C NMR (125 MHz, DMSO-d6) spectra of compound 4h S22
Figure S20. 1H NMR (500 MHz, DMSO-d6) spectra of compound 4i S23
Figure S21. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4i S24
Figure S22. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 4j S25
Figure S23. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 4j S26
Figure S24. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4k S27
Figure S25. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4k S28
Figure S26. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4l S29
Figure S27. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4l S30
Figure S28. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4m S31
Figure S29. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4m S32
Figure S30. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4n S33
Figure S31. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4n S34
Figure S32. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4o S35
Figure S33. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4o S36
Figure S34. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4p S37
Figure S35. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4p S38
Figure S36. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4q S39
Figure S37. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4q S40
Figure S38. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5a S41
Figure S39. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5a S42
Figure S40. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5b S43
Figure S41. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5b S44
Figure S42. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 5c S45
Figure S43. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 5c S46
Figure S44. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5d S47
Figure S45. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5d S48
Figure S46. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5e S49
Figure S47. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5e S50
Figure S48. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 5f S51
Figure S49. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 5f S52
Figure S50. 1H NMR (500 MHz, CDCl$_3$) spectra of compound 5g S53
Figure S51. 13C NMR (125 MHz, CDCl$_3$) spectra of compound 5g S54
Figure S52. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5h S55
Figure S53. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5h S56
Figure S54. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5i S57
Figure S55. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5i S58
Figure S56. 1H NMR (500 MHz, CDCl$_3$) spectra of compound 5j S59
Figure S57. 13C NMR (125 MHz, CDCl$_3$) spectra of compound 5j S60
Figure S58. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 5k S61
Figure S59. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 5k S62
Figure S60. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5l S63
Figure S61. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5l S64
Figure S62. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5m S65
Figure S63. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5m S66
Figure S64. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5n S67
Figure S65. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5n S68
Figure S66. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5o S69
Figure S67. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5o S70
Figure S68. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5p S71
Figure S69. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5p S72
Figure S70. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5q S73
Figure S71. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5q S74
Figure S72. 1H NMR (500 MHz, CDCl$_3$) spectra of compound 5r S75
Figure S73. 13C NMR (125 MHz, CDCl$_3$) spectra of compound 5r S76
Figure S74. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5s S77
Figure S75. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5s S78
Figure S76. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5t S79
Figure S77. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5t S80
Figure S78. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5u S81
Figure S79. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5u S82
Figure S80. 1H NMR (500 MHz, DMSO-d$_6$) spectra of compound 5v S83
Figure S81. 13C NMR (125 MHz, DMSO-d$_6$) spectra of compound 5v S84
Figure S82. 1H NMR (600 MHz, DMSO-d$_6$) spectra of compound 5w S85
Figure S83. 13C NMR (150 MHz, DMSO-d$_6$) spectra of compound 5w S86
Figure S84. 1H NMR (600 MHz, DMSO-d$_6$) spectra of compound 5x S87
Figure S85. 13C NMR (150 MHz, DMSO-d$_6$) spectra of compound 5x S88
Figure S86. 1H NMR (600 MHz, DMSO-d$_6$) spectra of compound 5f' S89
Figure S87. 13C NMR (150 MHz, DMSO-d$_6$) spectra of compound 5f' S90
Figure S88. HPLC of the reaction mixture ... S91
Figure S89. HRMS of intermediate 11 ... S92
Figure S90. HRMS of intermediate 12/13 ... S93
Figure S91. HRMS of compound 4h .. S94
Figure S92. HRMS of compound 5h .. S95
X-ray Structure and Data of 4a & 5s

Figure S1. X-Ray crystal structure of 4a; ellipsoids are drawn at the 30% probability level.

Table S1. Crystal data and structure refinement for 4a

<table>
<thead>
<tr>
<th>Identification code</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{21}H_{14}F_{3}N_{3}O_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>467.35</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 8.2387(14) Å, alpha = 78.884(2) deg.</td>
</tr>
<tr>
<td></td>
<td>b = 9.1226(15) Å, beta = 77.335(2) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 15.647(3) Å, gamma = 63.875(2) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1023.9(3) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>2, 1.516 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.136 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>476</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.300 x 0.250 x 0.230 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.502 to 24.995 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-9 ≤ h ≤ 9, -10 ≤ k ≤ 10, -18 ≤ l ≤ 18</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>7987 / 3571 [R(int) = 0.0226]</td>
</tr>
<tr>
<td>Completeness to theta = 25.242</td>
<td>96.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.969 and 0.960</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3571 / 0 / 300</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.094</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0501, wR2 = 0.1497</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0658, wR2 = 0.1619</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.023(5)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.432 and -0.275eÅ⁻³</td>
</tr>
</tbody>
</table>
Figure S2. X-Ray crystal structure of 5s; ellipsoids are drawn at the 30% probability level.

Table S2. Crystal data and structure refinement for 5s

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>I</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{23}H_{19}F_{5}N_{2}O_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>450.40</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 8.6308(16) Å, alpha = 78.895(2) deg.</td>
</tr>
<tr>
<td></td>
<td>b = 9.4049(18) Å, beta = 81.887(2) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 13.955(3) Å, gamma = 74.726(2) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1067.4(3) Å^3</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>2, 1.401 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.120 mm^-1</td>
</tr>
<tr>
<td>F(000)</td>
<td>464</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.350 x 0.300 x 0.200 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.494 to 25.150 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-10<=h<=10, -11<=k<=11, -16<=l<=16</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>8534 / 3809 [R(int) = 0.0261]</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>98.3 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.976 and 0.959</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3809 / 0 / 290</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.022</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0512, wR2 = 0.1386</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0861, wR2 = 0.1679</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.383 and -0.235 e Å^-3</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Figure S3. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4a
Figure S4. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4a
Figure S5. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 4b
Figure S6. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 4b
Figure S7. 19F NMR (564 MHz, CDCl$_3$) spectra of compound 4b
Figure S8. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4c
Figure S9. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4c
Figure S10. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4d
Figure S11. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4d
Figure S12. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4e
Figure S13. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4e
Figure S14. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4f
Figure S15. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4f
Figure S16. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4g
Figure S17. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4g
Figure S18. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4h
Figure S19. 13C NMR (125 MHz, DMSO-$_d_6$) spectra of compound 4h
Figure S20. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4i
Figure S21. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4i
Figure S22. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 4j
Figure S23. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 4j
Figure S24. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4k
Figure S25. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4k
Figure S26. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4l
Figure S27. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4l
Figure S28. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4m
Figure S29. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4m
Figure S30. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4n
Figure S31. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4n
Figure S32. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4o.
Figure S33. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4o
Figure S34. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4p
Figure S35. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4p
Figure S36. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 4q
Figure S37. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 4q
Figure S38. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5a
Figure S39. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5a
Figure S40. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5b
Figure S41. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5b
Figure S42. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 5c
Figure S43. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 5c
Figure S44. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5d
Figure S45. 13C NMR (125MHz, DMSO-d_6) spectra of compound 5d
Figure S46. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5e
Figure S47. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5e
Figure S48. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 5f
Figure S49. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 5f
Figure S50. 1H NMR (500 MHz, CDCl$_3$) spectra of compound 5g
Figure S51. 13C NMR (125 MHz, CDCl$_3$) spectra of compound 5g
Figure S52. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5h
Figure S53. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5h
Figure S54. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5i
Figure S55. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5i
Figure S56. 1H NMR (500 MHz, CDCl$_3$) spectra of compound 5j
Figure S57. 13C NMR (125 MHz, CDCl$_3$) spectra of compound 5j
Figure S58. 1H NMR (600 MHz, CDCl$_3$) spectra of compound 5k
Figure S59. 13C NMR (150 MHz, CDCl$_3$) spectra of compound 5k
Figure S60. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5l
Figure S61. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 51
Figure S62. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5m
Figure S63. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5m
Figure S64. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5n
Figure S65. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5n
Figure S66. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5o
Figure S67. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5o
Figure S68. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5p
Figure S69. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5p
Figure S70. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5q
Figure S71. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5q
Figure S72. 1H NMR (500 MHz, CDCl₃) spectra of compound 5r
Figure S73. 13C NMR (125 MHz, CDCl$_3$) spectra of compound 5r
Figure S74. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5s
Figure S75. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5s
Figure S76. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5t
Figure S77. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5t
Figure S78. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5u
Figure S79. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5u
Figure S80. 1H NMR (500 MHz, DMSO-d_6) spectra of compound 5v
Figure S81. 13C NMR (125 MHz, DMSO-d_6) spectra of compound 5v
Figure S82. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 5w
Figure S83. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 5w
Figure S84. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 5x
Figure S85. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 5x
Figure S86. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 5f'
Figure S87. 13C NMR (150MHz, DMSO-d_6) spectra of compound 5f'
Figure S88. HPLC of the reaction mixture
Figure S89. HRMS of intermediate 11
Figure S90. HRMS of intermediate 12/13
Figure S91. HRMS of compound 4h
HRMS of compound 5h

Figure S92. HRMS of compound 5h