Supporting Information

Electrocatalytic cross-coupling of biogenic diacids for the sustainable production of fuels

F. Joschka Holzhäuser, a Guido Creusen, b Gilles Moos, Manuel Dahmen, c Andrea König, d Jens Artz, a Stefan Palkovits a and Regina Palkovits a, *

a Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany. [*palkovits@ltmc.rwth-aachen.de]
b Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
c Institut für Energie- und Klimaforschung Modellierung von Energiesystemen, Forschungszentrum Jülich, Jülich, Germany
d Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen University, Aachen, Germany

1. Calculations
2. Experimental photographs
3. NMR spectra
4. Additional charts
5. Total faradaic efficiency charts
1. Calculations

Calculation of charge chronoamperometry (Q = charge, I = current, t = time):

\[Q = \int_{x}^{y} I \, dt \]

Calculation of charge potentiometry:

\[Q = It \]

Calculation of the faradiac efficiency (n_{mol} = amount of total product amount in mol, n = number of electrons transferred, F = Faraday constant):

\[F_{eff} = \frac{n_{mol}nF}{Q} \cdot 100\% \]

For 1 faradaic equivalent the equation becomes (n_{mol-spl} = simplified factor [dimensionless]):

\[F_{eff} = n_{mol-spl} \cdot 100\% \]
3. NMR spectra

1H-NMR: Tertbutyl-i

1H-NMR: mono-Methyl hydrogen methylsuccinic acid (MMSA)
1H-NMR: mono-Ethyl hydrogen succinate (HESA)
1H-NMR: Ethyl 5-methylhexanoate
1H-NMR: Dimethyl 2,5-dimethyladipiate
1H-NMR: Methyl 2,5-dimethylhexanoate
1H-NMR: 2,9-Dimethyldecane
4. Additional charts

[Chemical structure diagram and NMR spectrum graph]
Figure 1a: Variation of different ratios of MMSA with IVA. Conditions: 0 °C, MeOH:H$_2$O 80:20, 1 farad equivalent, 0.1 M NEt$_3$, 100 mAcm$^{-2}$, WE: Pt, CE: Ti. Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 5 mL).

Figure 2a: Variation of the electrolyte concentration. Conditions: 0 °C, MeOH:H$_2$O 80:20, 1 farad equivalent, 100 mAcm$^{-2}$, WE: Pt, CE: Ti, 0.33 M MMSA, 1.3 M IVA. Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 5 mL).
Figure 3a: Variation of the solvent mixture. Conditions: 0 °C, 1 farad equivalent, 100 mAc㎡⁻², WE: Pt, CE: Ti, 0.33 M MMSA, 1.3 M IVA, 0.1 M NE₃ (for 100% Water: 0.1 M MMSA, 0.4 M IVA). Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 5 mL).

Figure 4a: Screening of (RuₓTi₁₋ₓ)O₂ on titanium plates in comparison with Pt. Conditions: 0 °C, 1 farad equivalent, 100 mAc㎡⁻², MeOH as solvent, CE: Ti, 0.33 M MMSA, 1.3 M IVA, 0.1 M NE₃. Yield of MDH/ DDH related to MMSA, DH related to IVA (total Volume 2 mL).
5. Total faradaic efficiency charts (Complete new Section!)

For Figure 1(left) + Figure 1a: Variation of different ratios of MMSA/HESA with IVA. Conditions: 0 °C, MeOH:H₂O 80:20, after 1 farad equivalent, 0.1 M NEt₃, 100 mAcm⁻², WE: Pt, CE: Ti.

For Figure 1(right) + Figure 2a: Variation of the electrolyte concentration. Conditions: 0 °C, MeOH:H₂O 80:20, after 1 farad equivalent, 0.33 M MMSA/HESA, 1.3 M IVA.
For Figure 2 + Figure 3a: Variation of the solvent mixture. Conditions: 0 °C, after 1 farad equivalent, 100 mA cm$^{-2}$, WE: Pt, CE: Ti, 0.33 M MMSA/HESA, 1.3 M IVA, 0.1 M NEt$_3$ (for 100% Water: 0.1 M MMSA/HESA, 0.4 M IVA).

For Figure 3 + Figure 4a: Screening of (Ru$_x$Ti$_{1-x}$)O$_2$ on titanium plates in comparison with Pt. Conditions: 0 °C, after 1 farad equivalent, 100 mA cm$^{-2}$, MeOH as solvent, CE: Ti, 0.33 M MMSA/HESA, 1.3 M IVA, 0.1 M NEt$_3$.
For Figure 4: Screening of (Ru, Ti-x)O₂ on Ti and Pt plates with different electrolytes. Left: Using 0.1 M NEt₃ as electrolyte and base. Right: Using 0.1 M KOH as electrolyte and base. General conditions: 0 °C, after 1 farad equivalent, 100 mA cm⁻², MeOH as solvent, CE: Ti, 0.33 M MHO, 1.3 M IVA.

For Figure 5: Screening of (Ru, Ti-x)O₂ on Ti and Pt plates with different electrolytes. General conditions: 0 °C, after 1 farad equivalent, 100 mA cm⁻², MeOH as solvent, CE: Ti, 1 M MHO.