Supporting information
Metallomicelle Catalyzed Aerobic Tandem Desilylation/Glaser Reaction in Waters

Shanyu Tang, Longjia Li, Xuanhe Ren, Jiao Li, Guanyu Yang, Heng Li, and Bingxin Yuan*

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, China, 450001
Contents
General Information ..3
Typical Procedure to Synthesize L₁-L₄...4
Typical Procedure for Homocoupling of TMS-alkynes..4
Typical Procedure for Homocoupling of terminal alkynes ..4
Procedure for the circulation of the mother liquor...5
Preparation and Characterization of Micelles ..5
Characterization Data of all products..7
References ...12
The NMR Spectra of all products..14
Table S1. Optimization of reaction reagents.[a]

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{reaction_diagram.png}
\caption{Catalyst, ligand, base, H$_2$O, O$_2$, 100 °C, 6 h.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{cccccccc}
\hline
Entry & CuI (mol\%) & L$_2$ (mol\%) & NaOH (equiv.) & O$_2$ (MPa) & T (°C) & Yield (%)[b] \\
\hline
1 & 0 & 0 & 1 & 0.3 & 100 & 0 \\
2 & 1 & 1 & 1 & 0.3 & 100 & trace \\
3 & 5 & 5 & 1 & 0.3 & 100 & 47 \\
4 & 10 & 10 & 1 & 0.3 & 100 & 98 \\
5 & 15 & 15 & 1 & 0.3 & 100 & 98 \\
6 & 5 & 10 & 1 & 0.3 & 100 & 49 \\
7 & 10 & 5 & 1 & 0.3 & 100 & 53 \\
8 & 10 & 10 & 1 & 0.1 & 100 & 47[c], 0[d] \\
9 & 10 & 10 & 1 & 0.2 & 100 & 91 \\
10 & 10 & 10 & 1 & 0.3 & r.t. & 31 \\
11 & 10 & 10 & 1 & 0.3 & 60 & 69 \\
12 & 10 & 10 & 1 & 0.3 & 80 & 98 \\
13 & 10 & 10 & 0.2 & 0.3 & 80 & trace \\
14 & 10 & 10 & 0.4 & 0.3 & 80 & 24 \\
15 & 10 & 10 & 0.6 & 0.3 & 80 & 59 \\
16 & 10 & 10 & 0.8 & 0.3 & 80 & 88 \\
17 & 10 & 10 & 1.2 & 0.3 & 80 & 98 \\
\hline
\end{tabular}
\end{table}

[a] Reaction conditions: 1a (0.3 mmol), Catalyst (x mol\%), Ligand (y mol\%), NaOH (1.0 equiv.), H$_2$O (2 mL), O$_2$, T °C, 6 h. [b] Isolated yield. [c] air. [d] N$_2$.

\section*{General Information}
All materials and catalysts were purchased from general merchant. 1H NMR and 13C NMR spectra were recorded at a Bruker Advance III HD spectrometer (Bremen, Germany) at 600 MHz (400 MHz) for 1H NMR and 150 MHz (100 MHz) for 13C NMR with CDCl$_3$ or d_6-DMSO as the solvent and TMS as the internal standard. High resolution mass spectra (HRMS) were measured with an Agilent 1290-6540 (Santa
Clara, USA). Low resolution mass spectra (LRMS) were recorded at an electron ionization (EI) conditions by using a Shimadzu GCMS-QP2010 Plus mass spectrometer (Kyoto, Japan). The melting points of the products were determined by an X-4 micro-melting point apparatus (Beijing, China). UV is measured by Agilent 8453 UV-visible Spectroscopy System. The average hydrodynamic size of micelles was measured by dynamic light scattering (DLS) on a Particle Size and Zeta Potential (Nanoplus-3, Micromeritics, USA), and transmission electron microscope (TEM, TECNAIG2F20-S-TWIN, FEI, USA) with a field emission gun at 200 kV. Surface tension was measured by BYZ-2 automated tensiometer (Shanghai, China) at 289.15 K.

Typical Procedure to Synthesize L \(_1\)-L \(_4\)

A 25 mL Schlenk flask was charged with triethylene glycol MonoMethyl ether (3 mmol, 5.0 equiv), NaH (3.6 mmol, 6.0 equiv) and DMF (3 mL). The resulting mixture was stirred at room temperature for 10 minutes until no bubbles appeared in the reaction tube. And then 2,9-dibromo-1,10-phenanthroline (0.6 mmol, 1.0 equiv) was added. Finally, the schlenk tube was heated in 110 °C oil bath for 4 h. After the reaction was finished, the reaction mixture was extracted with dichloromethane (3 × 50 mL), and then dried over anhydrous sodium sulfate and filtered. After evaporation of the solvent under vacuum, the residue was subjected to flash column chromatography on silica gel to afford products L \(_1\)-L \(_4\).

Typical Procedure for Homocoupling of TMS-alkynes

A 25 mL Schlenk flask was charged with 1-Phenyl-2-(triMethylsilyl)acetylene (51.3 mg, 0.3 mmol), CuI (5.7 mg, 0.03 mmol), L \(_2\) (15.1 mg, 0.03 mmol), NaOH (12.0 mg, 0.3 mmol), H\(_2\)O (2 mL), 0.3 MPa O\(_2\), and then the resulting mixture was stirred at 80 °C for 6 h. After the reaction was finished, the reaction mixture was extracted with dichloromethane (3 × 50 mL), and then dried over anhydrous sodium sulfate and filtered. After evaporation of the solvent under vacuum, the residue was subjected to flash column chromatography on silica gel to afford products 2a-2l.

Typical Procedure for the Cross-coupling reaction of TMS-Alkynes

A 25 mL Schlenk flask was charged with ((4-methoxyphenyl)ethynyl)trimethylsilane (61.2 mg, 0.3 mmol), 1-Phenyl-2-(triMethylsilyl)acetylene (153.9 mg, 0.9 mmol), CuI (5.7 mg, 0.03 mmol), L \(_2\) (15.1 mg, 0.03 mmol), NaOH (12.0 mg, 0.3 mmol), H\(_2\)O (2 mL), 0.3 MPa O\(_2\), and then the resulting mixture was stirred at 80 °C for 6 h. After the reaction was finished, the reaction mixture was extracted with dichloromethane (3 × 50 mL), and then dried over anhydrous sodium sulfate and filtered. After evaporation of the solvent under vacuum, the residue was subjected to flash column chromatography on silica gel to afford products 2a-p.
Typical Procedure for the Cross-coupling reaction of terminal alkynes
A 25 mL Schlenk flask was charged with ethynylbenzene (30.6 mg, 0.3 mmol), 2-methylbut-3-yn-2-ol (75.6 mg, 0.9 mmol), CuI (5.7 mg, 0.03 mmol), L₂ (15.1 mg, 0.03 mmol), H₂O (2 mL), 0.3 MPa O₂, and then the resulting mixture was stirred at 80 °C for 6 h. After the reaction was finished, the reaction mixture was extracted with dichloromethane (3 × 50 mL), and then dried over anhydrous sodium sulfate and filtered. After evaporation of the solvent under vacuum, the residue was subjected to flash column chromatography on silica gel to afford products 4a-4d.

Procedure for the circulation of the mother liquor
To a reactor (70 mL) was added 1-Phenyl-2-(triMethylsilyl)acetylene 1a (342 mg, 2 mmol), CuI (38 mg, 0.2 mmol), L₂ (100.8 mg, 0.2 mmol), NaOH (80 mg, 2 mmol), H₂O (15 mL). The reactor was charged with O₂ up to 0.3 MPa three times. Subsequently, the reactor was stirred under 0.3 MPa O₂ at 80 °C for 12 h, replenishing oxygen up to 0.3 MPa promptly if the pressure declined during the reaction period. After cooling to room temperature, the reaction mixture was filtered and washed with 0.5 mL water. The filter cake was dried and the desired product 2a was obtained, giving the yield up to 96%. The filtrate was reused directly in the next run. A fresh batch of ethynylbenzene (204 mg, 2 mmol) and NaOH (80 mg, 2 mmol) was added to the filtrate and the reaction was performed under the same reaction condition. We carried out the oxidation process successfully in 5 runs, with the yields varying as follow: 96%, 94%, 93%, 90%, 90%.

To a reactor (70 mL) was added ethynylbenzene 1a’ (204 mg, 2 mmol), CuI (38 mg, 0.2 mmol), L₂ (100.8 mg, 0.2 mmol), H₂O (15 mL). The reactor was charged with O₂ up to 0.3 MPa three times. Subsequently, the reactor was stirred under 0.3 MPa O₂ at 80 °C for 12 h, replenishing oxygen up to 0.3 MPa promptly if the pressure declined during the reaction period. After cooling to room temperature, the reaction mixture was filtered and washed with 0.5 mL water. The filter cake was dried and the desired product 2a was obtained, giving the yield up to 97%. The filtrate was reused directly as the solvent in the next run with the addition of fresh ethynylbenzene (204 mg, 2 mmol). We carried out the oxidation process successfully in 5 runs, with the yields varying as follow: 97%, 95%, 92%, 91%, 89%.

Preparation and Characterization of Micelles
UV-Vis measurement of Micelles
L₂ was formulated into an aqueous solution of 0.015 mol/L. CuI was added in a corresponding ratio. The mixed solution was stirred at room temperature for 12 h and
then diluted to 4×10^{-5} mol/L. The measurement was carried out using water as a background solution.

TEM measurement of Micelles

1) TEM of pure L_2

L_2 (0.02 mmol, 10.1 mg) was dissolved in 2 mL of water and stirred at room temperature for 2 h to obtain a micelle solution. To prepare specimens for TEM observation, a drop of the micelle solution was deposited onto a carbon-coated copper grid. After deposition, excess solution was removed using a strip of filter paper. Then the carbon-coated copper grid dried in air.

2) TEM of CuI/L_2 (1:1)

L_2 (0.02 mmol, 10.1 mg) and CuI (0.02 mmol, 3.8 mg) was dissolved in 2 mL of water and stirred at room temperature for 12 h to obtain a micelle solution. To prepare specimens for TEM observation, a drop of the micelle solution was deposited onto a carbon-coated copper grid. After deposition, excess solution was removed using a strip of filter paper. Then the carbon-coated copper grid dried in air.

DLS measurement of Micelles

1. DLS measurement of Cu/L_2 (Cu:$L_2 = 1:1$)

CuI and L_2 are mixed in 1:1 ratio to prepare a micelle solution of 0.015 mol/mL. The solution was stirred 12 h at room temperature. The average hydrodynamic size of micelles was measured by dynamic light scattering (DLS) on a a Particle Size and Zeta Potential (Nanoplus-3, Micromeritics, USA).

2. DLS measurement of L_2

A 0.015 mol/mL solution of L_2 was prepared by stirring for 12 h at room temperature. The average hydrodynamic size of micelles was measured by dynamic light scattering (DLS) on a a Particle Size and Zeta Potential (Nanoplus-3, Micromeritics, USA).

Surface tension measurement of Micelles

A micelle solution of 3×10^{-2} mol/L L_2 was prepared. The solution was stirred 2 h at room temperature and then diluted to 2.5×10^{-2} mol/L, 2×10^{-2} mol/L, 1.5×10^{-2} mol/L, 1.25×10^{-2} mol/L, 1×10^{-2} mol/L, 7.5×10^{-3} mol/L, 6×10^{-3} mol/L, 5×10^{-3} mol/L, 3×10^{-3} mol/L, 2.5×10^{-3} mol/L, 1×10^{-3} mol/L, 5×10^{-4} mol/L, 2.5×10^{-4} mol/L, 1×10^{-4} mol/L, respectively. And then, the solutions was stirred 2 h at room temperature. The surface tensions of the solutions of micelles were determined by the Wilhelmy Plate method with an accuracy of ± 0.01 mN/m. The measurements were carried out at 286.15 K with an uncertainty of 0.1 K.
2,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1,10-phenanthroline (L₁). colorless oil (272.7 mg, 90% yield) (ethyl acetate as eluent). 1H NMR (400 MHz, CDCl₃) δ = 8.06 (d, J = 8.7 Hz, 2H), 7.58 (s, 2H), 7.11 (d, J = 8.7 Hz, 2H), 4.93-4.80 (m, 4H), 4.08-3.96 (m, 4H), 3.83-3.77 (m, 4H), 3.73-3.68 (m, 4H), 3.68-3.61 (m, 4H), 3.56-3.50 (m, 4H), 3.36 (s, 6H). 13C NMR (100 MHz, CDCl₃) δ = 162.1, 142.9, 139.0, 125.2, 123.4, 113.6, 71.9, 70.6, 70.6, 70.5, 69.9, 65.1, 59.0. HRMS (ESI): m/z calcd for C₂₆H₃₇N₂O₈ $[^{M+H}]^+$, 505.2544; found, 505.2543.

4,7-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1,10-phenanthroline (L₂). orange oil (284.9 mg, 94% yield) (methyl alcohol as eluent). 1H NMR (400 MHz, CDCl₃) δ = 8.99 (d, J = 5.2 Hz, 2H), 8.20 (s, 2H), 6.99 (d, J = 5.3 Hz, 2H), 4.48-4.31 (m, 4H), 4.08-4.02 (m, 4H), 3.90-3.77 (m, 4H), 3.74-3.69 (m, 4H), 3.69-3.64 (m, 4H), 3.57-3.52 (m, 4H), 3.37 (s, 6H). 13C NMR (100 MHz, CDCl₃) δ = 161.4, 151.1, 146.9, 120.9, 119.1, 103.5, 71.9, 71.1, 70.7, 70.6, 69.4, 68.1, 59.1. HRMS (ESI): m/z calcd for C₂₆H₃₇N₂O₈ $[^{M+H}]^+$, 505.2544; found, 505.2548.
6,6'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2,2'-bipyridine (L₃). Yellow oil (284.9 mg, 89% yield) (ethyl acetate as eluent). ¹H NMR (400 MHz, CDCl₃) δ = 8.04-7.85 (m, 2H), 7.75-7.58 (m, 2H), 6.82-6.74 (m, 2H), 4.61 (t, J = 3.8 Hz, 4H), 3.95-3.7 (m, 4H), 3.79-3.73 (m, 4H), 3.71-3.63 (m, 8H), 3.58-3.51 (m, 4H), 3.37 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.8, 153.2, 139.3, 113.7, 111.3, 71.9, 70.7, 70.6, 69.8, 64.9, 59.1. HRMS (ESI): m/z calcd for C₂₄H₃₇N₂O₈ [M+H]+, 481.2544; found, 481.2549.

4,4'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2,2'-bipyridine (L₄): Yellow oil (284.9 mg, 89% yield) (ethyl acetate as eluent). ¹H NMR (400 MHz, CDCl₃) δ = 8.45 (d, J = 5.7 Hz, 2H), 7.98 (d, J = 2.4 Hz, 2H), 6.89-6.83 (m, 2H), 4.31-4.24 (m, 4H), 3.92-3.84 (m, 4H), 3.77-3.71 (m, 4H), 3.69-3.60 (m, 8H), 3.55-3.51 (m, 4H), 3.36 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 165.9, 157.8, 150.1, 111.5, 106.6, 71.9, 70.7, 70.6, 69.4, 67.5, 59.1. HRMS (ESI): m/z calcd for C₂₄H₃₇N₂O₈ [M+H]+, 481.2544; found, 481.2549.

1,4-diphenylbuta-1,3-diyne (2a). White solid (30.0 mg, 99% yield) (hexane as eluent); mp 86-87°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.55-7.51 (m, 5H), 7.38-7.30 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ = 132.5, 129.3, 128.5, 121.8, 81.6, 74.0. LRMS (EI): m/z calcd for C₁₆H₁₀ [M]+, 202; found, 202.

1,4-di-p-tolylbuta-1,3-diyne (2b). White solid (32.4 mg, 94% yield) (hexane as eluent); mp 189-190°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.41 (d, J = 8.1 Hz, 4H), 7.14 (d, J = 7.9 Hz, 4H), 2.36 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 139.5, 132.4, 129.2, 118.8, 81.6, 73.5, 21.7. LRMS (EI): m/z calcd for C₁₈H₁₄ [M]+, 230; found, 230.
1,4-di-\(m \)-tolybuta-1,3-diyne (2c)\(^1\). White solid (28.6 mg, 83% yield) (hexane as eluent); mp 69-70 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.35-7.33\) (m, 4H), 7.25-7.15 (m, 4H), 2.34 (s, 6H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 138.2, 133.0, 130.2, 129.6, 128.4, 121.6, 81.6, 73.6, 21.3\). LRMS (EI): m/z calcd for C\(_{18}\)H\(_{14}\) [M]\(^+\), 230; found, 230.

1,4-di-o-tolybuta-1,3-diyne (2d)\(^2\). White solid (33.1 mg, 96% yield) (hexane as eluent); mp 72-74 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.45\) (d, \(J = 7.6\) Hz, 2H), 7.22-7.14 (m, 4H), 7.10 (t, \(J = 7.4\) Hz, 2H), 2.44 (s, 6H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 141.7, 132.9, 129.6, 129.1, 125.7, 121.7, 81.2, 77.5, 20.8\). LRMS (EI): m/z calcd for C\(_{18}\)H\(_{14}\) [M]\(^+\), 230; found, 230.

1,4-bis(4-(tert-butyl)phenyl)buta-1,3-diyne (2e)\(^3\). White solid (42.9 mg, 91% yield) (hexane as eluent); mp 193-194 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.46\) (d, \(J = 8.8\) Hz, 4H), 7.35 (d, \(J = 8.4\) Hz, 4H), 1.31 (s, 18H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 152.6, 132.3, 125.5, 118.8, 81.5, 73.5, 34.9, 31.1\). LRMS (EI): m/z calcd for C\(_{24}\)H\(_{26}\) [M]\(^+\), 314; found, 314.

1,4-bis(4-methoxyphenyl)buta-1,3-diyne (2f)\(^1\). Pale yellow solid (38.1 mg, 97% yield) (hexane as eluent); mp 139-140 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.46\) (d, \(J = 8.8\) Hz, 4H), 6.85 (d, \(J = 8.8\) Hz, 4H), 3.82 (s, 6H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 160.3, 134.1, 114.2, 113.9, 81.3, 73.0, 55.4\). LRMS (EI): m/z calcd for C\(_{18}\)H\(_{14}\)O\(_2\) [M]\(^+\), 262; found, 262.

1,4-bis(2-chlorophenyl)buta-1,3-diyne (2g)\(^1\). White solid (39.7 mg, 98% yield) (hexane as eluent); mp 138-140 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.60-7.55\) (m, 2H), 7.45-7.39 (m, 2H), 7.34-7.28 (m, 2H), 7.27-7.20 (m, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 137.0, 134.4, 130.3, 129.5, 126.6, 121.8, 79.5, 78.4\). LRMS (EI): m/z calcd for C\(_{18}\)H\(_2\)Cl\(_2\) [M]\(^+\), 270; found, 270.
1,4-bis(2-bromophenyl)buta-1,3-diyne (2h)[4]. Pale yellow solid (46.7 mg, 87% yield) (hexane as eluent); mp 180-182 °C. 1H NMR (400 MHz, CDCl$_3$) δ = 7.63-7.54 (m, 4H), 7.33-7.18 (m, 4H). 13C NMR (100 MHz, CDCl$_3$) δ = 134.6, 132.6, 130.5, 127.2, 126.3, 124.1, 81.1, 77.9. LRMS (EI): m/z calcd for C$_{16}$H$_8$Br$_2$ [M]$^+$, 358; found, 358.

1,4-bis(4-fluorophenyl)buta-1,3-diyne (2i)[1]. White solid (31.2 mg, 87% yield) (hexane as eluent); mp 190-191 °C. 1H NMR (400 MHz, CDCl$_3$) δ = 7.55-7.48 (m, 4H), 7.09-6.99 (m, 4H). 13C NMR (100 MHz, CDCl$_3$) δ = 164.3 (d, J = 250.1 Hz), 134.6 (d, J = 8.6 Hz), 117.8 (d, J = 3.6 Hz), 116.0 (d, J = 22.3 Hz), 80.44, 73.53. LRMS (EI): m/z calcd for C$_{16}$H$_8$F$_2$ [M]$^+$, 238; found, 238.

1,4-bis(4-(trifluoromethyl)phenyl)buta-1,3-diyne (2j)[5]. Pale yellow solid (47.2 mg, 93% yield) (hexane as eluent); mp 167-168 °C. 1H NMR (400 MHz, CDCl$_3$) δ = 7.65-7.60 (m, 8H). 13C NMR (100 MHz, CDCl$_3$) δ = 132.8, 131.0 (q, J = 32.0 Hz), 125.2, 125.4 (q, J = 4.0 Hz), 123.7 (q, J = 271.0 Hz), 81.0, 75.6. LRMS (EI): m/z calcd for C$_{18}$H$_8$F$_6$ [M]$^+$, 338; found, 338.

1,4-di(naphthalen-1-yl)buta-1,3-diyne (2k)[6]. White solid (42.1 mg, 93% yield) (hexane as eluent); mp 169-171 °C. 1H NMR (400 MHz, CDCl$_3$) δ = 8.43 (d, J = 8.3 Hz, 2H), 7.92-7.80 (m, 6H), 7.68-7.60 (m, 2H), 7.58-7.52 (m, 2H), 7.49-7.42 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ = 133.9, 133.1, 132.1, 129.8, 128.5, 127.3, 126.8, 126.2, 125.3, 119.5, 81.0, 78.7. LRMS (EI): m/z calcd for C$_{24}$H$_{14}$ [M]$^+$, 302; found, 302.

1,4-di(thiophen-2-yl)buta-1,3-diyne (2l)[1]. White solid (26.0 mg, 81% yield) (hexane as eluent); mp 90-91 °C. 1H NMR (400 MHz, CDCl$_3$) δ = 7.39-7.25 (m, 4H), 7.07-6.88 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ = 134.5, 129.0, 127.3, 121.9, 77.9, 76.7. LRMS (EI): m/z calcd for C$_{12}$H$_6$S$_2$ [M]$^+$, 214; found, 214.

deca-4,6-diyne (2m)[7]: Colorless oil (15.1 mg, 75% yield) (hexane as eluent). 1H NMR (400 MHz, CDCl$_3$) δ = 2.23 (t, J = 7.0 Hz, 4H), 1.62-1.47 (m, 4H), 0.99 (t, J = 7.4 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ = 77.2, 65.4, 21.9, 21.1, 13.4. LRMS (EI): m/z calcd for C$_{19}$H$_{14}$ [M]$^+$, 134; found, 134.
1,4-dicyclopentylbuta-1,3-diyne (2n)[8]. Colorless oil (14.4 mg, 74\% yield) (hexane as eluent). 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta = 1.34-1.23 \) (m, 2H), 0.81-0.73 (m, 8H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta = 80.0, 60.8, 8.7, 0.1 \). LRMS (EI): m/z calcd for C\textsubscript{10}H\textsubscript{10} \([M]^+\), 130; found, 130.

\begin{center}
13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta = 80.0, 60.8, 8.7, 0.1 \).
\end{center}

2,7-dimethylocta-3,5-diyne-2,7-diol (2o)[5]. White solid (21.0 mg, 84\% yield) (hexane as eluent); mp 130-132 °C. 1H NMR (400 MHz, DMSO) \(\delta = 5.55 \) (s, 2H), 1.37 (s, 12H). 13C NMR (100 MHz, DMSO) \(\delta = 86.1, 65.5, 64.1, 31.5 \). LRMS (EI): m/z calcd for C\textsubscript{10}H\textsubscript{14}O\textsubscript{2} \([M]^+\), 166; found, 166.

13C NMR (100 MHz, DMSO) \(\delta = 86.1, 65.5, 64.1, 31.5 \).

1,4-bis(trimethylsilyl)buta-1,3-diyne (2p)[7]. White solid (24.5 mg, 84\% yield) (hexane as eluent); mp 107-109 °C. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta = 0.19 \) (s, 18H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta = 88.0, 85.9, -0.5 \). LRMS (EI): m/z calcd for C\textsubscript{10}H\textsubscript{18}Si\textsubscript{2} \([M]^+\), 194; found, 194.

\begin{center}
1,4-bis(trimethylsilyl)buta-1,3-diyne (2p).
\end{center}

1-methoxy-4-(phenylbuta-1,3-diyn-1-yl)benzene (4a)[9]. White solid (46.6 mg, 67\% yield) (hexane as eluent); mp 95-96 °C. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta = 7.46-7.41 \) (m, 2H), 7.39 (d, \(J = 8.7 \) Hz, 2H), 7.28-7.21 (m, 3H), 6.78 (d, \(J = 8.7 \) Hz, 2H), 3.73 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta = 160.4, 134.2, 132.5, 129.1, 128.5, 122.0, 114.2, 113.7, 81.9, 81.1, 74.2, 72.8, 55.4 \). LRMS (EI): m/z calcd for C\textsubscript{17}H\textsubscript{12}O \([M]^+\), 232; found, 232.

13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta = 160.4, 134.2, 132.5, 129.1, 128.5, 122.0, 114.2, 113.7, 81.9, 81.1, 74.2, 72.8, 55.4 \).

1-fluoro-4-((4-methoxyphenyl)buta-1,3-diyn-1-yl)benzene (4b)[1]. White solid (47.3 mg, 63\% yield) (hexane as eluent); mp 119-121 °C. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta = 7.53-7.43 \) (m, 4H), 7.09-6.97 (m, 2H), 6.91-6.80 (m, 2H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta = 164.2, 161.7, 160.4, 134.2, 132.5, 129.1, 128.5, 122.0, 114.2, 113.7, 81.8, 79.9, 74.0, 74.0, 72.6, 55.4 \). LRMS (EI): m/z calcd for C\textsubscript{17}H\textsubscript{11}FO \([M]^+\), 250; found, 250.

\begin{center}
1-fluoro-4-((4-methoxyphenyl)buta-1,3-diyn-1-yl)benzene (4b).
\end{center}

2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)thiophene (4c)[10]. White solid (50.7 mg, 71\% yield) (hexane as eluent); mp 67-69 °C. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta = 7.49-7.43 \) (m, 2H), 7.33-7.29 (m, 2H), 7.00-6.98 (m, 1H), 6.89-6.82 (m, 2H), 3.82 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta = 160.5, 134.2, 134.1, 128.5, 127.2, 122.3, 114.2, 113.6, 115.8, 115.4, 114.2, 113.6, 81.8, 79.9, 74.0, 74.0, 72.6, 55.4 \). LRMS (EI): m/z calcd for C\textsubscript{17}H\textsubscript{11}FO \([M]^+\), 250; found, 250.

\begin{center}
2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)thiophene (4c).
\end{center}

\begin{center}
1-methoxy-4-(phenylbuta-1,3-diyn-1-yl)benzene (4a).
\end{center}

\begin{center}
1-fluoro-4-((4-methoxyphenyl)buta-1,3-diyn-1-yl)benzene (4b).
\end{center}

\begin{center}
2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)thiophene (4c).
\end{center}
83.9, 78.2, 74.0, 72.6, 55.4. LRMS (EI): m/z calcd for C_{15}H_{10}OS [M]^+, 238; found, 238.

1-(cyclopropylbuta-1,3-diyn-1-yl)-4-methoxybenzene (4d)\(^{[11]}\). Pale yellow oil (30.6 mg, 52% yield) (hexane as eluent). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.45-7.36\) (m, 2H), 6.85-6.77 (m, 2H), 3.80 (s, 3H), 1.45-1.34 (m, 1H), 0.92-0.76 (m, 4H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 159.6, 133.7, 113.7, 86.8, 73.9, 72.9, 60.2, 54.9, 8.6, 0.00\). LRMS (EI): m/z calcd for C\(_{14}\)H\(_{12}\)O [M]^+, 196; found, 196.

2-methyl-6-phenylhexa-3,5-diyn-2-ol (5a)\(^{[9]}\). White solid (36.4 mg, 66% yield) (hexane as eluent); mp 54-56 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.51-7.44\) (m, 2H), 7.38-7.28 (m, 3H), 2.18 (s, 1H), 1.58 (s, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 132.5, 129.3, 128.5, 121.5, 86.7, 78.8, 73.1, 67.1, 65.8, 31.1\). LRMS (EI): m/z calcd for C\(_{13}\)H\(_{12}\)O [M]^+, 184; found, 184.

2-methyl-6-(\(p\)-tolyl)hexa-3,5-diyn-2-ol (5b)\(^{[9]}\). Pale yellow solid (35.1 mg, 59% yield) (hexane as eluent); mp 78-79 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.38\) (d, \(J = 8.0\) Hz, 2H), 7.12 (d, \(J = 7.9\) Hz, 2H), 2.35 (s, 3H), 1.58 (s, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 139.7, 132.5, 129.2, 118.4, 86.3, 79.1, 72.5, 67.2, 65.8, 31.2, 21.7\). LRMS (EI): m/z calcd for C\(_{14}\)H\(_{14}\)O [M]^+, 198; found, 198.

6-(4-fluorophenyl)-2-methylhexa-3,5-diyn-2-ol (5c)\(^{[9]}\). White solid (43.0 mg, 71% yield) (hexane as eluent); mp 82-84 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.49-7.43\) (m, 2H), 7.05-6.98 (m, 2H), 2.12 (s, 1H), 1.58 (s, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta = 164.3, 161.8, 134.6, 134.5, 117.7, 117.6, 116.0, 115.8, 86.7, 77.7, 72.9, 72.9, 66.9, 65.8, 31.1\). LRMS (EI): m/z calcd for C\(_{13}\)H\(_{11}\)FO [M]^+, 202; found, 202.

References
The NMR Spectra of all products

2,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1,10-phenanthroline (L₁):
4,7-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1,10-phenanthroline (L₂):
6,6'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2,2'-bipyridine (L₃):
4,4'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2,2'-bipyridine (L\textsubscript{4}):
1,4-diphenylbuta-1,3-diyne (2a):
1,4-di-\textit{p}-tolylbuta-1,3-diyn (2b):
1,4-di-\textit{m}-tolylbuta-1,3-diyne (2c):
1,4-di-o-tolylbuta-1,3-diyne (2d):
1,4-bis(4-(tert-butyl)phenyl)buta-1,3-diyne (2e):
1,4-bis(4-methoxyphenyl)buta-1,3-diyne (2f):

S23
1,4-bis(2-chlorophenyl)buta-1,3-diyne (2g):
1,4-bis(2-bromophenyl)buta-1,3-diyne (2h):
1,4-bis(4-fluorophenyl)buta-1,3-diyne (2i):
1,4-bis(4-(trifluoromethyl)phenyl)buta-1,3-diyne (2j):
1,4-di(naphthalen-1-yl)buta-1,3-diyne (2k):
1,4-di(thiophen-2-yl)buta-1,3-diyne (2l):
deca-4,6-diyn e (2m):
1,4-dicyclopropylbuta-1,3-diyne (2n):
2,7-dimethylocta-3,5-diyno-2,7-diol (2o):
1,4-bis(trimethylsilyl)buta-1,3-diyne (2p):
1-methoxy-4-(phenylbuta-1,3-diyn-1-yl)benzene (4a):
1-fluoro-4-((4-methoxyphenyl)buta-1,3-diyyn-1-yl)benzene (4b):
2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)thiophene (4c):
1-(cyclopropylbuta-1,3-diyn-1-yl)-4-methoxybenzene (4d):
2-methyl-6-phenylhexa-3,5-diyn-2-ol (5a):
2-methyl-6-(p-tolyl)hexa-3,5-diyn-2-ol (5b):
6-(4-fluorophenyl)-2-methylhexa-3,5-diyne-2-ol (5c):