Supplementary Information

Extending the capabilities of field flow fractionation online with ICP-MS for the determination of particulate carbon in latex and charcoal

Volker Nischwitz 1*, Nina Gottselig 2, Anna Missong 2, Erwin Klumpp 3, Melanie Braun 2
1 Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Forschungszentrum Juelich, 52425 Juelich, Germany
2 Institute of Crop Science and Resource Conservation (INRES), Soil Science & Soil Ecology, Bonn University, 53115 Bonn, Germany
3 Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich, Juelich, Germany

Figure S1 Multi-Element fractograms (Al, Fe and P) recorded by FFF-ICP-MS for the same extracts (Soil_A_Rep1) of soil and charcoal spiked soil (Soil_Charcoal_A_Rep1) shown in Figure 3
Figure S2 Variation of sampling depth for increasing amounts of carbon introduced by flow-injection FFF online with ICP-MS into the plasma (n=1). The sample was an aqueous suspension of 100 nm latex particles at a carbon concentration of approximately 350 mg/L.

![Graph showing variation of sampling depth](image1)

Figure S3 Calibration at sampling depth 8.5 by variation of the injection volume of a 100 nm latex suspension (approximately 350 mg/L carbon) using flow injection FFF-ICP-MS.

![Graph showing calibration](image2)