Electronic Supplementary Information (ESI)

Feasibility of As, Sb, Se and Te Determination in Coal by Solid Sampling Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry

Alessandra S. Henn^a, Erico M. M. Flores^a, Valderi L. Dressler^a, Marcia F. Mesko^b, Joerg Feldmann^c, Paola A. Mello^a

^a Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.

^b Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil.

^c Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, King's College, Aberdeen, AB24 3UE, Scotland, UK

Fig. S1. Effect of pyrolysis temperature on the coal matrix decomposition, (—) coal "A", (—) coal "B", (—) coal "C". Error bars represent the standard deviation (n=3). Residual mass was calculated by weighing the platform using a microbalance (model M2P, +/- 0.001 mg, Sartorius, Germany) before and after the application of the pyrolysis step. The difference between the initial and final mass was calculated considering the initial mass as 100%.

Fig. S2. Effect of oxygen flow rate on coal matrix decomposition, (—) coal "A", (—) coal "B", (—) coal "C". Heating program: 60 s at 500 °C (45 s of ramp). Error bars represent the standard deviation (n=3).

Fig. S3. Effect of carrier gas flow rate on sinal profile of (—) As, (—) Sb, (—) Se, (—) Te and (—) Ar₂ from 1 ng of reference solution, (A) carrier gas flow rate was 0.35 L min⁻¹ and (B) carrier gas flow rate was 0.45 L min⁻¹. Pyrolysis at 800 °C and vaporization at 2300 °C. Iridium (4 μ g) was used as chemical modifier. Bypass gas flow rate was 0.35 L min⁻¹.