Electronic Supplementary Information

Optofluidic differential colorimetry for rapid nitrite determination

Y. Shi, a H. L. Liu, a X. Q. Zhu, a b J. M. Zhu, a Y. F. Zuo, a b Y. Yang, a b F. H. Jiang, c C. J. Sun, c W. H. Zhao d and X. T. Han d

a Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China. E-mail: yangyiys@whu.edu.cn
b Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
c The First Institute of Oceanography, SOA, China
d Institute of Oceanology, Chinese Academy of Sciences, China

Experimental results when \(c = 0.33 \text{ mM} \) and the light intensity when absorption cells are affected by impurity:

S1. The micrograph (a) and transmitted light intensity (b) of microfluidic network when the concentration ratio of colour reagent and nitrite equals 3:1. (c) The transmitted light intensity in detection points measured under the influence of impurities.