Electronic Supporting Information

Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors

Penghui Lia, Wenjin Zhanga, Hong Jianga, Yongliang Lia, Changzhi Donga,b, Huixiong Chena,c, Kun Zhanga,d, Zhiyun Dua,*

aInstitute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou 510006, China
bUniversite Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baif, 75270 Cedex 13 Pairs, France
cCNRS, UMR8601, Laboratoire de Chimine et Biochimie Pharmacologiques et Toxicologiques, CBNIT, Universite Paris Descartes PRES Sorbonne Paris Cite, UFR Biomedicale, 45 rue des Saints-Peres, 75270 Cedex 06 Paris, France.
dWuyi University, Jiangmen529020, China.

Table of contents

✧ Electronic Supporting Information ..S1
✧ 1H NMR and 2D NOESY Spectrum of Compound 3a ...S2
✧ 1H NMR and 2D NOESY Spectrum of Compound 3b ..S3
✧ Chemistry ..S4-S17
✧ 1H NMR and 13C NMR Spectrum of Target Compounds ..S18-S52
1H NMR and 2D NOESY (DMSO-d_6) Spectrum of Compound 3a

Fig. S1. 1H NMR (upper) and 2D NOESY analysis of 3a. The protons on the aromatic ring (6-H, 7-H, and 8-H) are easily assigned on the basis of 2D NOESY relations.
Fig. S2. 1H NMR and 2D NOESY analysis of 3b. The protons on the aromatic ring (4-H, 5-H, 7-H, and 8-H) are easily assigned on the basis of 2D NOESY relations.
Chemistry

General method for the synthesis of 1a–1d

The mixture of a substituted benzene-1,2-diamine (10 mmol) and glycolic acid (30 mmol) in HCl (4 N, 30 mL) was heated to reflux at 100 °C for 6 h and the reaction was quenched with saturated aqueous sodium bicarbonate. The white solid were collected by filtration. They were used directly without further purification.

General method for the synthesis of 2a–2s, 3a–3f, and 4a–4g

The solution of a 1a–1d (1 mmol) in DMF (2 mL) were added the appropriate benzyl bromide (2 mmol) and K₂CO₃ (5 mmol), and the reaction mixture was stirred at room temperature for 8 h. It was then diluted with DCM (8 mL) and H₂O (8 mL). The organic layer
was separated, and the aqueous layer was extracted with DCM (8 mL × 2). The combined organic layers were dried over MgSO₄ and concentrated in vacuo to provide a crude product, which was purified by PTLC (DCM/MeOH = 100/5, v/v) to yield the title compound.

(1-(4-Bromobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2a)

1-Bromo-4-(bromomethyl) benzene and 1a were used as reactants to give 2a. While solid, Yield: 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.16 (d, J = 7.7 Hz, 1H), 6.97 (d, J = 8.2 Hz, 2H), 5.41 (s, 2H), 4.86 (s, 2H).

(1-(4-Bromo-2-fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2b)

4-Bromo-1-(bromomethyl)-2-fluorobenzene and 1a were used as reactants to give 2b. While solid. Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.7 Hz, 1H), 7.30 (d, J = 9.7 Hz, 1H), 7.26 – 7.15 (m, 3H), 7.10 (d, J = 8.2 Hz, 1H), 7.03 – 6.95 (m, 1H), 7.03 (d, J = 8.2 Hz, 2H), 5.45 (s, 2H), 4.91 (s, 2H).

4-((2-(Hydroxymethyl)-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile (2c)

4-(Bromomethyl)benzonitrile and 1a were used as reactants to give 2c. While solid. Yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.3 Hz, 1H), 7.22 (d, J = 7.4 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.8 Hz, 1H), 5.55 (s, 2H), 4.89 (s, 2H).

(1-(4-Nitrobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2d)

1-(Bromomethyl)-4-nitrobenzene and 1a were used as reactants to give 2d. While solid. Yield: 66%. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 7.7 Hz, 1H), 7.29 (d, J = 7.1 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.12 (d, J = 7.8 Hz, 1H), 5.60 (s, 2H), 4.91 (s, 2H).
(1-(4-Fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2e)

1-(Bromomethyl)-4-fluorobenzene and 1a were used as reactants to give 2e. While solid.
Yield: 87%. 1H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.8 Hz, 1H), 7.25–7.19 (m, 3H), 7.12–7.06 (m, 2H), 7.00–6.92 (m, 2H), 5.42 (s, 2H), 4.87 (s, 2H).

(1-(Benzy1-1H-benzo[d]imidazol-2-yl)methanol (2f)

(Bromomethyl)benzene and 1a were used as reactants to give 2f. While solid. Yield: 69%. 1H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 1H), 7.32–7.22 (m, 6H), 7.13–7.07 (m, 2H), 5.45 (s, 2H), 4.87 (s, 2H).

(1-(4-Methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2g)

1-(Bromomethyl)-4-methylbenzene and 1a were used as reactants to give 2g. While solid.
Yield: 73%. 1H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 1H), 7.32–7.22 (m, 6H), 7.09 (d, J = 7.7 Hz, 2H), 6.99 (d, J = 7.7 Hz, 2H), 5.40 (s, 2H), 4.87 (s, 2H), 2.30 (s, 3H).

(1-(4-Chlorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2h)

1-(Bromomethyl)-4-chlorobenzene and 1a were used as reactants to give 2h. While solid.
Yield: 84%. 1H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 1H), 7.29–7.25 (d, J = 8.2 Hz, 3H), 7.21 (d, J = 7.4 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.03 (d, J = 8.1 Hz, 2H), 5.43 (s, 2H), 4.87 (s, 2H).

(1-(4-(Trifluoromethyl)benzyl)-1H-benzo[d]imidazol-2-yl)methanol (2i)

1-(Bromomethyl)-4-(trifluoromethyl)benzene and 1a were used as reactants to give 2i. While solid. Yield: 86%. 1H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.23 (d, 1H), 7.20 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 7.7 Hz, 1H), 5.54 (s, 2H), 4.90 (s, 2H).

(1-(2-Fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2j)
1-(Bromomethyl)-2-fluorobenzene and 1a were used as reactants to give 2j. While solid. Yield: 77\%. 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (d, J = 7.3 Hz, 1H), 7.30 – 7.22 (m, 3H), 7.10 (d, J = 9.2 Hz, 1H), 6.98 (d, J = 7.4 Hz, 1H), 6.84 (d, J = 7.4 Hz, 1H), 5.50 (s, 2H), 4.92 (s, 2H).

(I-(2,4-Difluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2k)

1-(Bromomethyl)-2,4-difluorobenzene and 1a were used as reactants to give 2k. While solid. Yield: 71\%. 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (d, J = 7.6 Hz, 1H), 7.26 – 7.16 (m, 3H), 6.90 – 6.82 (m, 2H), 6.70 (d, J = 8.3 Hz, 1H), 5.46 (s, 2H), 4.92 (s, 2H).

(I-(3-Fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2l)

1-(Bromomethyl)-3-fluorobenzene and 1a were used as reactants to give 2l. While solid. Yield: 84\%. 1H NMR (400 MHz, CDCl$_3$) δ 7.72 (d, J = 7.5 Hz, 1H), 7.26–7.18 (m, 4H), 6.97 (d, J = 8.3 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 9.3 Hz, 1H), 5.46 (s, 2H), 4.88 (s, 2H), 4.37 (s, 1H).

(I-(3,4-Difluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2m)

4-(Bromomethyl)-1,2-difluorobenzene and 1a were used as reactants to give 2m. While solid. Yield: 74\%. 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (d, J = 7.7 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.16 (d, J = 7.5 Hz, 1H), 7.11–7.05 (m, 1H), 7.01 – 6.93 (m, 1H), 6.86 (d, J = 6.6 Hz, 1H), 5.42 (s, 2H), 4.88 (s, 2H).

(I-(3,5-Dimethoxybenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2n)

1-(Bromomethyl)-3,5-dimethoxybenzene and 1a were used as reactants to give 2n. While solid. Yield: 85\%. 1H NMR (400 MHz, CDCl$_3$) δ 7.72 (d, J = 7.8 Hz, 1H), 7.22 (d, J = 14.1 Hz, 3H), 6.35 (s, 1H), 6.25 (s, 2H), 5.37 (s, 2H), 4.87 (s, 2H), 3.69 (s, 6H).

(I-Ethyl-1H-benzo[d]imidazol-2-yl)methanol (2o)
Bromoethane and 1a were used as reactants to give 2o. 1H NMR (400 MHz, CDCl$_3$-d$_6$) δ 7.68 (d, $J = 6.7, 2.2$ Hz, 1H), 7.32 (d, $J = 6.7, 2.1$ Hz, 1H), 7.28 – 7.21 (m, 2H), 4.88 (s, 2H), 4.29 (q, $J = 7.3$ Hz, 2H), 1.46 (t, $J = 7.3$ Hz, 3H).

1-(4-Fluorophenyl)-2-(2-(hydroxymethyl)-1H-benzo[d]imidazol-1-yl)ethanone (2p)

2-Bromo-1-(4-fluorophenyl)ethanone and 1a were used as reactants to give 2p. While solid. Yield: 77%. 1H NMR (400 MHz, CDCl$_3$) δ 8.12–8.02 (dd, $J = 8.6, 5.3$ Hz, 2H), 7.72 – 7.67 (m, 1H), 7.25 – 7.19 (m, 4H), 7.12 – 7.08 (m, 1H), 5.65 (s, 2H), 4.80 (s, 2H).

2-(2-(hydroxymethyl)-1H-benzo[d]imidazol-1-yl)-1-(4-methoxyphenyl)ethanone(2q)

2-Bromo-1-(4-methoxyphenyl)ethanone and 1a were used as reactants to give 2q. While solid. Yield: 88%. 1H NMR (400 MHz, CDCl$_3$) δ 8.01 (d, $J = 8.8$ Hz, 2H), 7.72 (dd, $J = 6.3, 2.2$ Hz, 1H), 7.26 – 7.20 (m, 2H), 7.12 (dd, $J = 6.4, 2.4$ Hz, 1H), 7.01 (d, $J = 8.9$ Hz, 2H), 5.64 (s, 2H), 4.83 (s, 2H), 3.91 (s, 3H).

1-(4-chlorophenyl)-2-(2-(hydroxymethyl)-1H-benzo[d]imidazol-1-yl)ethanone (2r)

2-Bromo-1-(4-chlorophenyl)ethanone and 1a were used as reactants to give 2r. While solid. Yield: 81%. 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, $J = 8.5$ Hz, 2H), 7.70 (d, $J = 8.6$ Hz, 1H), 7.51 (s, 2H), 7.26 – 7.22 (m, 2H), 7.12 – 7.09 (m, 1H), 5.65 (s, 2H), 4.81 (s, 2H).

2-(2-(Hydroxymethyl)-1H-benzo[d]imidazol-1-yl)-1-(p-tolyl)ethanone (2s)

2-Bromo-1-(p-tolyl)ethanone and 1a were used as reactants to give 2s. While solid. Yield: 75%. 1H NMR (400 MHz, CDCl$_3$) δ 7.93 (d, $J = 8.1$ Hz, 2H), 7.71 (d, $J = 7.9$ Hz, 1H), 7.34 (d, $J = 8.0$ Hz, 2H), 7.25 – 7.20 (m, 2H), 7.13 – 7.09 (m, 1H), 5.66 (s, 2H), 4.81 (s, 2H), 2.46 (s, 3H).

(5 or 6-Chloro-1-(4-methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (3a and 3b)
1-(Bromomethyl)-4-methylbenzene and 1b were used as reactants to give 3a and 3b. For 3a: while solid. Yield: 36%. 1H NMR (400 MHz, CDCl$_3$) δ 7.67 (d, $J = 1.3$ Hz, 1H), 7.21–7.09 (m, 4H), 6.98 (d, $J = 8.0$ Hz, 2H), 5.40 (s, 2H), 4.88 (s, 2H), 2.31 (s, 3H). For 3b: while solid. Yield: 41%. 1H NMR (400 MHz, CDCl$_3$) δ 7.61 (d, $J = 9.3$ Hz, 1H), 7.23 – 7.19 (m, 2H), 7.10 (d, $J = 7.9$ Hz, 2H), 6.97 (d, $J = 8.0$ Hz, 2H), 5.35 (s, 2H), 4.85 (s, 2H), 2.32 (s, 3H).

5 or 6-Fluoro-1-(4-methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (3c and 3d)

1-(Bromomethyl)-4-methylbenzene and 1c were used as reactants to give 3c and 3d. For 3c: while solid. Yield: 33%. 1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.30 (m, 1H), 7.12 – 7.08 (m, 3H), 7.02 – 6.94(dd, $J = 8.0$, 3.7 Hz, 3H), 5.39 (s, 2H), 4.86 (s, 2H), 2.31 (s, 3H). For 3d: while solid. Yield: 27%. 1H NMR (400 MHz, CDCl$_3$) δ 7.68 – 7.60 (m, 1H), 7.10 (d, $J = 8.0$ Hz, 2H), 6.99 (d, $J = 8.2$ Hz, 3H), 6.92 – 6.84 (m, 1H), 5.36 (s, 2H), 4.86 (s, 2H), 2.31 (s, 3H).

5 or 6-Methoxy-1-(4-methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (3e and 3f)

1-(Bromomethyl)-4-methylbenzene and 1d were used as reactants to give 3e and 3f. For 3e: while solid. Yield: 42%. 1H NMR (400 MHz, CDCl$_3$) δ 7.17 (d, $J = 2.1$ Hz, 1H), 7.12 – 7.04 (m, 3H), 6.98 (d, $J = 8.0$ Hz, 2H), 6.91 – 6.83 (m, 1H), 5.38 (s, 2H), 4.85 (s, 2H), 3.82 (s, 3H), 2.30 (s, 3H). For 3f: while solid. Yield: 38%. 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, $J = 8.8$ Hz, 1H), 7.09 (d, $J = 7.9$ Hz, 2H), 6.99 (d, $J = 8.0$ Hz, 2H), 6.87 (dd, $J = 8.7$, 2.2 Hz, 1H), 6.65 (d, $J = 2.1$ Hz, 1H), 5.36 (s, 2H), 4.82 (s, 2H), 3.77 (s, 3H), 2.30 (s, 3H).

5 or 6-Chloro-1-(2-fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (4a and 4b)

1-(Bromomethyl)-2-fluorobenzene and 1b were used as reactants to give 4a and 4b. For 4a: while solid. Yield: 37%. 1H NMR (400 MHz, CDCl$_3$) δ 7.66 (s, 1H), 7.32 – 7.27 (m, 1H), 7.21 – 7.15 (m, 1H), 7.18 – 7.06 (m, 2H), 7.02 (t, $J = 7.5$ Hz, 1H), 6.87 (t, $J = 7.1$ Hz, 1H), 5.49 (s,
2H), 4.92 (s, 2H). For 4b: while solid. Yield: 29%. 1H NMR (400 MHz, CDCl$_3$) δ 7.61 (d, $J = 8.3$ Hz, 1H), 7.33 – 7.27 (m, 1H), 7.25 – 7.20 (m, 2H), 7.14 – 7.09 (m, 1H), 7.03 (t, $J = 7.5$ Hz, 1H), 6.85 (t, $J = 7.2$ Hz, 1H), 5.46 (s, 2H), 4.90 (s, 2H).

(5 or 6-fluoro-1-(2-fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (4c and 4d)

1-(Bromomethyl)-2-fluorobenzene and 1c were used as reactants to give 4c and 4d. For 4c: while solid. Yield: 42%. 1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.33 (m, 1H), 7.32 – 7.27 (m, 1H), 7.04 – 6.94 (m, 2H), 6.87 (t, $J = 7.6$ Hz, 1H), 5.49 (s, 2H), 4.92 (s, 2H). For 4d: while solid. Yield: 38%. 1H NMR (400 MHz, CDCl$_3$) δ 7.63 (d, $J = 8.7$, 4.7 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.14 – 7.08 (m, 1H), 7.03 (t, $J = 5.1$ Hz, 1H), 7.01 – 6.95 (m, 1H), 6.94 – 6.86 (m, 2H), 5.46 (s, 2H), 4.91 (s, 2H).

(1-(2-Fluorobenzyl)-5 or 6-methoxy-1H-benzo[d]imidazol-2-yl)methanol (4e and 4f)

1-(Bromomethyl)-2-fluorobenzene and 1d were used as reactants to give 4e and 4f. For 4e: while solid. Yield: 34%. 1H NMR (400 MHz, CDCl$_3$) δ 7.26 – 7.22 (m, 1H), 7.18 (d, $J = 2.3$ Hz, 1H), 7.12 – 7.07 (m, 2H), 6.97 (t, $J = 7.5$ Hz, 1H), 6.86 – 6.80 (m, 2H), 5.47 (s, 2H), 4.89 (s, 2H), 3.83 (s, 3H). For 4f: while solid. Yield: 40%. 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, $J = 8.8$ Hz, 1H), 7.30 – 7.26 (m, 1H), 7.13 – 7.08 (m, 1H), 7.00 (t, $J = 7.5$ Hz, 1H), 6.89 – 6.83 (m, 2H), 6.65 (d, $J = 2.2$ Hz, 1H), 5.46 (s, 2H), 4.88 (s, 2H), 3.78 (s, 3H).

General method for the synthesis of 5a–5s, 6a–6f, and 7a–7g

To a solution of 2a–2s, 3a–3f, or 4a–4f (1 mmol) in DCM (10 mL) was added Dess-Martin reagent (1.1 mmol), and the reaction was stirred at 4 °C for 1 h. The reaction was quenched with a saturated aqueous sodium thiosulfate solution (3 mL) and subsequent mixture was extracted with DCM (10 mL × 3). The combined organic extracts were dried over MgSO$_4$.
and concentrated. The crude product obtained was purified by PTLC (DCM/MeOH = 100/5, v/v) to yield the title products.

![Chemical structures](image)

- **Compound 2a**: 1-(4-Bromobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5a)
 - 5a: R₁ = H, R₂ = p-Br;
 - 5b: R₁ = H, R₂ = o-F, p-Br;
 - 5c: R₁ = H, R₂ = p-CN;
 - 5d: R₁ = H, R₂ = p-NO₂;
 - 5e: R₁ = H, R₂ = p-F;
 - 5f: R₁ = H, R₂ = H;
 - 5g: R₁ = H, R₂ = p-CH₃;
 - 5h: R₁ = H, R₂ = p-Cl;
 - 5i: R₁ = H, R₂ = p-CF₃;
 - 5j: R₁ = H, R₂ = o-F;
 - 5k: R₁ = H, R₂ = o-F; p-F;
 - 5l: R₁ = H, R₂ = m-F;
 - 5m: R₁ = H, R₂ = m-F; p-F;
 - 5n: R₁ = H, R₂ = m-OCH₃; m-OCH₃;

 1-(4-Bromobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5a)

 While solid. Yield: 48%. ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.97 (d, J = 7.7 Hz, 1H), 7.49 – 7.39 (m, 5H), 7.04 (d, J = 8.1 Hz, 2H), 5.80 (s, 2H).

- **Compound 2b**: 1-(4-Bromo-2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5b)
 - 5b: R₁ = H, R₂ = o-F, p-Br;
 - 5c: R₁ = H, R₂ = p-CN;
 - 5d: R₁ = H, R₂ = p-NO₂;
 - 5e: R₁ = H, R₂ = p-F;
 - 5f: R₁ = H, R₂ = H;
 - 5g: R₁ = H, R₂ = p-CH₃;
 - 5h: R₁ = H, R₂ = p-Cl;
 - 5i: R₁ = H, R₂ = p-CF₃;
 - 5j: R₁ = H, R₂ = o-F;
 - 5k: R₁ = H, R₂ = o-F; p-F;
 - 5l: R₁ = H, R₂ = m-F;
 - 5m: R₁ = H, R₂ = m-F; p-F;
 - 5n: R₁ = H, R₂ = m-OCH₃; m-OCH₃;

 1-(4-Bromo-2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5b)

 While solid. Yield: 53%. ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.31 – 7.27 (m, 1H), 7.22 – 7.16 (m, 1H), 6.80 (t, J = 8.1 Hz, 1H), 5.87 (s, 2H).

- **Compound 2c**: 4-((2-Formyl-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile (5c)
 - 5c: R₁ = 5-Cl, R₂ = p-CH₃; 6a: R₁ = 5-Cl, R₂ = p-CH₃;
 - 5d: R₁ = 6-Cl, R₂ = p-CH₃;
 - 6b: R₁ = 6-Cl, R₂ = p-CH₃;
 - 6c: R₁ = 5-F, R₂ = p-CH₃;
 - 6d: R₁ = 6-F, R₂ = p-CH₃;
 - 6e: R₁ = 5-OCH₃, R₂ = p-CH₃;
 - 6f: R₁ = 6-OCH₃, R₂ = p-CH₃;
 - 5p: R₁ = p-F;
 - 5q: R₁ = p-OCH₃;
 - 5r: R₁ = p-Cl;
 - 5s: R₁ = p-CH₃;

 4-((2-Formyl-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile (5c)

 While solid. Yield: 52%. ¹H NMR (400 MHz,
CDCl$_3$ δ 10.12 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.51 – 7.42 (m, 2H), 7.40 (d, J = 7.9 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 5.90 (s, 2H).

1-(4-Nitrobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5d)

Compound 2d was used as reactant to give 5d. While solid. Yield: 47%. 1H NMR (400 MHz, CDCl$_3$) δ 10.13 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 7.9 Hz, 1H), 7.52 – 7.39 (m, 3H), 7.30 (d, J = 8.3 Hz, 2H), 5.95 (s, 2H).

1-(4-Fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5e)

Compound 2e was used as reactant to give 5e. While solid. Yield: 57%. 1H NMR (400 MHz, CDCl$_3$) δ 10.14 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.50 – 7.38 (m, 3H), 7.21 – 7.13 (m, 2H), 6.98 (t, J = 8.5 Hz, 2H), 5.82 (s, 2H).

1-Benzyl-1H-benzo[d]imidazole-2-carbaldehyde (5f)

Compound 2f was used as reactant to give 5f. While solid. Yield: 64%. 1H NMR (400 MHz, CDCl$_3$) δ 10.15 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.48 – 7.38 (m, 3H), 7.30 – 7.25 (m, 3H), 7.17 (d, J = 7.1 Hz, 2H), 5.87 (s, 2H).

1-(4-Methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5g)

Compound 2g was used as reactant to give 5g. While solid. Yield: 58%. 1H NMR (400 MHz, CDCl$_3$) δ 10.15 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.49 – 7.37 (m, 3H), 7.12 – 7.05 (m, 4H), 5.82 (s, 2H), 2.29 (s, 3H).

1-(4-Chlorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5h)

Compound 2h was used as reactant to give 5h. While solid. Yield: 64%. 1H NMR (400 MHz, CDCl$_3$) δ 10.14 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.27 (d, J = 5.9 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 5.82 (s, 2H).
1-(4-(Trifluoromethyl)benzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5i)

Compound 2i was used as reactant to give 5i. While solid. Yield: 55%. 1H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.48 – 7.44 (m, 3H), 7.26 (s, 2H), 5.92 (s, 2H).

1-(2-Fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5j)

Compound 2j was used as reactant to give 5j. While solid. Yield: 49%. 1H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.50 – 7.38 (m, 3H), 7.25 (d, J = 10.5 Hz, 1H), 7.09 (t, J = 9.2 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 5.94 (s, 2H).

1-(2,4-Difluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5k)

Compound 2k was used as reactant to give 5k. While solid. Yield: 67%. 1H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.51 – 7.39 (m, 3H), 6.99 – 6.95 (m, 1H), 6.85 (t, J = 8.0 Hz, 1H), 6.76 (t, J = 7.1 Hz, 1H), 5.88 (s, 2H).

1-(3-Fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5l)

Compound 2l was used as reactant to give 5l. While solid. Yield: 55%. 1H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.29 – 7.26 (m, 1H), 6.96 (t, J = 8.8 Hz, 2H), 6.85 (d, J = 9.4 Hz, 1H), 5.85 (s, 2H).

1-(3,4-Difluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5m)

Compound 2m was used as reactant to give 5m. While solid. Yield: 46%. 1H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.13 – 7.05 (m, 1H), 7.03 – 6.97 (m, 1H), 6.93 (m, 1H), 5.80 (s, 2H).

1-(3,5-Dimethoxybenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5n)
Compound **2n** was used as reactant to give **5n**. While solid. Yield: 49%. 1H NMR (400 MHz, CDCl$_3$) δ 10.07 (s, 1H), 7.91 (d, $J = 8.1$ Hz, 1H), 7.75 (d, $J = 8.3$ Hz, 1H), 7.48 (t, $J = 7.6$ Hz, 1H), 7.40 (t, $J = 7.6$ Hz, 1H), 6.40 (s, 1H), 6.32 (s, 2H), 5.81 (s, 2H), 3.67 (s, 6H).

1-Ethyl-1H-benzo[d]imidazole-2-carbaldehyde (5o)

Compound **2o** was used as reactant to give **5o**. While solid. Yield: 42%. 1H NMR (400 MHz, CDCl$_3$) δ 10.13 (s, 1H), 7.94 (d, $J = 8.3$ Hz, 1H), 7.55 – 7.45 (m, 2H), 7.46 – 7.34 (m, 1H), 4.67 (q, $J = 7.2$ Hz, 2H), 1.46 (t, $J = 7.2$ Hz, 3H).

1-(2-(4-Fluorophenyl)-2-oxoethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5p)

Compound **2p** was used as reactant to give **5p**. While solid. Yield: 55%. 1H NMR (400 MHz, CDCl$_3$) δ 10.09 (s, 1H), 8.14 – 8.06 (m, $J = 7.0$, 5.0, 2.4 Hz, 2H), 8.00 (d, $J = 7.6$ Hz, 1H), 7.50 – 7.40 (m, 2H), 7.32 (d, $J = 7.9$ Hz, 1H), 7.26 – 7.21 (m, 2H), 6.03 (s, 2H).

1-(2-(4-methoxyphenyl)-2-oxoethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5q)

Compound **2q** was used as reactant to give **5q**. While solid. Yield: 59%. 1H NMR (400 MHz, CDCl$_3$) δ 10.09 (s, 1H), 8.03 (d, $J = 8.8$ Hz, 2H), 7.98 (d, $J = 7.8$ Hz, 1H), 7.48 – 7.39 (m, 2H), 7.32 (d, $J = 8.1$ Hz, 1H), 7.03 (d, $J = 8.8$ Hz, 2H), 6.03 (s, 2H), 3.92 (s, 3H).

1-(2-(4-Chlorophenyl)-2-oxoethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5r)

Compound **2r** was used as reactant to give **5r**. While solid. Yield: 63%. 1H NMR (400 MHz, CDCl$_3$) δ 10.08 (s, 1H), 7.99 (d, $J = 8.6$ Hz, 3H), 7.54 (d, $J = 8.5$ Hz, 2H), 7.49 – 7.41 (m, 2H), 7.32 (d, $J = 7.9$ Hz, 1H), 6.02 (s, 2H).

1-(2-Oxo-2-(p-tolyl)ethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5s)
Compound 2s was used as reactant to give 5s. While solid. Yield: 49%. 1H NMR (400 MHz, CDCl$_3$) δ 10.10 (s, 1H), 7.99 – 7.95 (m, 3H), 7.50 – 7.38 (m, 3H), 7.38 – 7.30 (m, 3H), 6.05 (s, 2H), 2.47 (s, 3H).

5-Chloro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6a)

Compound 3a was used as reactant to give 6a. While solid. Yield: 57%. 1H NMR (400 MHz, CDCl$_3$) δ 10.13 (s, 1H), 7.92 (s, 1H), 7.38 (s, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 5.80 (s, 2H), 2.30 (s, 3H).

6-Chloro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6b)

Compound 3b was used as reactant to give 6b. While solid. Yield: 39%. 1H NMR (400 MHz, CDCl$_3$) δ 10.12 (s, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.45 (d, J = 1.6 Hz, 1H), 7.39 – 7.31 (m, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 5.77 (s, 2H), 2.31 (s, 3H).

5-Fluoro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6c)

Compound 3c was used as reactant to give 6c. While solid. Yield: 45%. 1H NMR (400 MHz, CDCl$_3$) δ 10.13 (s, 1H), 7.61 – 7.67 (m, 1H), 7.41 – 7.35 (m, 1H), 7.26 – 7.18 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 5.81 (s, 2H), 2.30 (s, 3H).

6-Fluoro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6d)

Compound 3d was used as reactant to give 6d. While solid. Yield: 36%. 1H NMR (400 MHz, CDCl$_3$) δ 10.09 (s, 1H), 7.91 – 7.87 (m, 1H), 7.17 – 7.09 (m, 4H), 7.06 (d, J = 8.1 Hz, 2H), 5.77 (s, 2H), 2.30 (s, 3H).

5-Methoxy-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6e)

Compound 3e was used as reactant to give 6e. While solid. Yield: 61%. 1H NMR (400 MHz, CDCl$_3$) δ 10.10 (s, 1H), 7.36 – 7.28 (m, 2H), 7.10 (d, J = 2.2 Hz, 1H), 7.09 – 7.04 (m, 4H), 5.77 (s, 2H), 2.30 (s, 3H).
5.79 (s, 2H), 3.88 (s, 3H), 2.29 (s, 3H).

6-Methoxy-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6f)

Compound 3f was used as reactant to give 6f. While solid. Yield: 63%. 1H NMR (400 MHz, CDCl$_3$) δ 10.05 (s, 1H), 7.81 (d, $J = 9.0$ Hz, 1H), 7.10 (d, $J = 8.2$ Hz, 2H), 7.08 – 7.01 (m, 3H), 6.77 (d, $J = 2.3$ Hz, 1H), 5.78 (s, 2H), 3.84 (s, 3H), 2.30 (s, 3H).

5-Chloro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (7a)

Compound 4a was used as reactant to give 7a. While solid. Yield: 53%. 1H NMR (400 MHz, CDCl$_3$) δ 10.14 (s, 1H), 7.93 (d, $J = 0.8$ Hz, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.28 (m, 1H), 7.12 – 7.06 (m, 1H), 7.06 – 7.00 (m, 1H), 6.98 – 6.90 (m, $J = 7.6, 1.4$ Hz, 1H), 5.92 (s, 2H).

6-Chloro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (7b)

Compound 4b was used as reactant to give 7b. While solid. Yield: 56%. 1H NMR (400 MHz, CDCl$_3$) δ 10.13 (s, 1H), 7.86 (d, $J = 8.8$ Hz, 1H), 7.47 (d, $J = 1.6$ Hz, 1H), 7.40 – 7.32 (m, 1H), 7.32 – 7.27 (m, 1H), 7.14 – 7.08 (m, 1H), 7.04 (t, $J = 7.5$ Hz, 1H), 6.94 (t, $J = 7.5$ Hz, 1H), 5.89 (s, 2H).

5-Fluoro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (7c)

Compound 4c was used as reactant to give 7c. While solid. Yield: 62%. 1H NMR (400 MHz, CDCl$_3$) δ 10.14 (s, 1H), 7.63 – 7.55 (m, 1H), 7.47 – 7.39 (m, 1H), 7.31 – 7.26 (m, 1H), 7.23 – 7.19 (m, 1H), 7.12 – 7.07 (m, 1H), 7.13 – 7.05 (m, 1H), 6.97 – 6.93 (m, 1H), 5.92 (s, 2H).

6-Fluoro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (7d)

Compound 4d was used as reactant to give 7d. While solid. Yield: 57%. 1H NMR (400 MHz, CDCl$_3$) δ 10.11 (s, 1H), 7.92 – 7.88 (m, 1H), 7.32 – 7.26 (m, 1H), 7.17 – 7.09 (m, 3H), 7.06 – 7.02 (m, 1H), 7.02 – 6.94 (m, 1H), 5.89 (s, 2H).

1-(2-Fluorobenzyl)-5-methoxy-1H-benzo[d]imidazole-2-carbaldehyde (7e)
Compound 4e was used as reactant to give 7e. While solid. Yield: 42%.1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 10.11 (s, 1H), 7.35 (d, \(J = 9.1\) Hz, 1H), 7.31 (d, \(J = 2.2\) Hz, 1H), 7.26 – 7.22 (m, 1H), 7.13 – 7.05 (m, 2H), 7.01 (t, \(J = 7.5\) Hz, 1H), 6.92 (t, \(J = 7.6\) Hz, 1H), 5.91 (s, 2H), 3.88 (s, 3H).

1-(2-Fluorobenzyl)-6-methoxy-1H-benzo[d]imidazole-2-carbaldehyde (7f)

Compound 4f was used as reactant to give 7f. While solid. Yield: 45%.1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 10.07 (s, 1H), 7.81 (d, \(J = 9.0\) Hz, 1H), 7.30 – 7.26 (m, 1H), 7.13 – 7.07 (m, 1H), 7.06 – 7.00 (m, 2H), 6.98 – 6.94 (m, 1H), 6.82 (d, \(J = 2.3\) Hz, 1H), 5.90 (s, 2H), 3.85 (s, 3H).
1H NMR and 13C NMR Spectrum of Target Compounds

1H NMR (400 MHz, DMSO-d_6) spectrum of $8a$

13C NMR (400 MHz, DMSO-d_6) spectrum of $8a$
1H NMR (400 MHz, DMSO-d_6) spectrum of 8b

13C NMR (400 MHz, DMSO-d_6) spectrum of 8b
1H NMR (400 MHz, DMSO-d_6) spectrum of 8c

13C NMR (400 MHz, DMSO-d_6) spectrum of 8c
1H NMR (400 MHz, DMSO-d_6) spectrum of 8d

13C NMR (400 MHz, DMSO-d_6) spectrum of 8d
1H NMR (400 MHz, DMSO-d_6) spectrum of 8e

13C NMR (400 MHz, DMSO-d_6) spectrum of 8e
1H NMR (400 MHz, DMSO-d_6) spectrum of $8f$

13C NMR (400 MHz, DMSO-d_6) spectrum of $8f$
1H NMR (400 MHz, DMSO-d_6) spectrum of 8g

13C NMR (400 MHz, DMSO-d_6) spectrum of 8g
1H NMR (400 MHz, DMSO-d_6) spectrum of 8h

13C NMR (400 MHz, DMSO-d_6) spectrum of 8h
1H NMR (400 MHz, DMSO-d_6) spectrum of 8i

13C NMR (400 MHz, DMSO-d_6) spectrum of 8i
1H NMR (400 MHz, DMSO-d_6) spectrum of 8j

13C NMR (400 MHz, DMSO-d_6) spectrum of 8j
1H NMR (400 MHz, DMSO-d_6) spectrum of 8k

13C NMR (400 MHz, DMSO-d_6) spectrum of 8k
1H NMR (400 MHz, DMSO-d_6) spectrum of $8l$

13C NMR (400 MHz, DMSO-d_6) spectrum of $8l$
1H NMR (400 MHz, DMSO-d_6) spectrum of 8m

13C NMR (400 MHz, DMSO-d_6) spectrum of 8m
1H NMR (400 MHz, DMSO-d_6) spectrum of 8n

13C NMR (400 MHz, DMSO-d_6) spectrum of 8n
1H NMR (400 MHz, DMSO-d_6) spectrum of 8o

13C NMR (400 MHz, DMSO-d_6) spectrum of 8o
1H NMR (400 MHz, DMSO-d_6) spectrum of 9a

13C NMR (400 MHz, DMSO-d_6) spectrum of 9a
1H NMR (400 MHz, DMSO-d_6) spectrum of 9b

13C NMR (400 MHz, DMSO-d_6) spectrum of 9b
1H NMR (400 MHz, DMSO-d_6) spectrum of 9c

13C NMR (400 MHz, DMSO-d_6) spectrum of 9c
1H NMR (400 MHz, DMSO-d_6) spectrum of 9d

13C NMR (400 MHz, DMSO-d_6) spectrum of 9d
1H NMR (400 MHz, DMSO-d_6) spectrum of 10a

13C NMR (400 MHz, DMSO-d_6) spectrum of 10a
1H NMR (400 MHz, DMSO-d_6) spectrum of 10b

13C NMR (400 MHz, DMSO-d_6) spectrum of 10b
1H NMR (400 MHz, DMSO-d_6) spectrum of 10c

13C NMR (400 MHz, DMSO-d_6) spectrum of 10c
1H NMR (400 MHz, DMSO-d_6) spectrum of 10d

13C NMR (400 MHz, DMSO-d_6) spectrum of 10d
1H NMR (400 MHz, DMSO-d_6) spectrum of 10e

13C NMR (400 MHz, DMSO-d_6) spectrum of 10e
1H NMR (400 MHz, DMSO-d_6) spectrum of 10f

13C NMR (400 MHz, DMSO-d_6) spectrum of 10f
1H NMR (400 MHz, DMSO-d_6) spectrum of 10g

13C NMR (400 MHz, DMSO-d_6) spectrum of 10g
1H NMR (400 MHz, DMSO-d_6) spectrum of 10i

13C NMR (400 MHz, DMSO-d_6) spectrum of 10i
1H NMR (400 MHz, DMSO-d_6) spectrum of 11a

13C NMR (400 MHz, DMSO-d_6) spectrum of 11a
1H NMR (400 MHz, DMSO-\textit{d}\textsubscript{6}) spectrum of 11b

13C NMR (400 MHz, DMSO-\textit{d}\textsubscript{6}) spectrum of 11b
^{1}H NMR (400 MHz, DMSO-d_6) spectrum of 11c

^{13}C NMR (400 MHz, DMSO-d_6) spectrum of 11c
1H NMR (400 MHz, DMSO-d_6) spectrum of 11d

13C NMR (400 MHz, DMSO-d_6) spectrum of 11d
1H NMR (400 MHz, DMSO-d_6) spectrum of 11e

13C NMR (400 MHz, DMSO-d_6) spectrum of 11e
1H NMR (400 MHz, DMSO-d_6) spectrum of 11f

13C NMR (400 MHz, DMSO-d_6) spectrum of 11f
1H NMR (400 MHz, DMSO-d_6) spectrum of ^{11}g

13C NMR (400 MHz, DMSO-d_6) spectrum of ^{11}g
1H NMR (400 MHz, DMSO-d_6) spectrum of 11h

13C NMR (400 MHz, DMSO-d_6) spectrum of 11h