Supporting Information

Covered by Neuroligin-2 derived peptide polyamidoamine-based (PAMAM) dendrimers enhance pancreatic β-cells proliferation and functions

Anna Munder, a Yoni Moskovitz, a Aviv Meir, a Shirin Kahremany, a,b Laura Levy, a Michal Kolitz-Domb, a Guy Cohen, c Efrat Shtriker, a Olga Viskind, a Jean-Paul Lellouche, ad Hanoch Senderowitz, a Steven D. Chessler, c Edward E. Korshin, a Sharon Ruthstein, a and Arie Gruzman* a

a Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel.

b Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA

c Skin Research Institute, Dead Sea and Arava Research Center, Masada, Israel

d Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel

e Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of California, Irvine, CA, USA
Table of contents

1. Materials ... 1
2. Characterization data of modified HSA-28 peptide... 2
3. Synthetic procedures.. 4
4. NMR spectra images.. 14
5. Mass spectroscopy analytical data.. 34
6. MALDI mass spectra of PAMAM dendrimer .. 44
7. HSA-28D characterization.. 45
8. Estimation of the percentage of dendrimer coating by peptidomimetics 46
9. Lack of biological effect of coated by peptidomimetics PAMAM dendrimer 47
1. Materials

PAMAM dendrimer (ethylenediamine core, fifth generation), bovine serum albumin (BSA), glucose oxidase (GO), thapsigargin (Tg), protease inhibitor cocktail, radioimmunoprecipitation assay buffer (RIPA), rink amide resin, 2,2-diphenylethylamine, benzhydrylamine, phenethylamine, benzylamine, glycaminamide hydrochloride, α-and β-naphthaldehyde, 1,2,3,4–tetraisoquinoline, n-bromoethylphtalimide, potassium carbonate, potassium iodide, tert-butyl acrylate, isobutylamine, triethylamine, 2-iminothiolane, 3-maleimidopropionic acid were purchased from Sigma-Aldrich (Merk),(Rehovot, Israel). Fetal calf serum (FCS), phosphate buffered saline (PBS), L-glutamine, Trypan blue, Roswell Park Memorial Institute medium (RPMI-1640), and antibiotics were purchased from Biological Industries (Beth-Haemek, Israel). Formaldehyde (4% in PBS) was purchased from Bio-Lab (Jerusalem, Israel). Rink amide resin, DIEA, protected amino acids were obtained from Chem Impex (Wood Dale, IL, USA). β-Mercaptoethanol was purchased from Bio-Rad (Hercules, CA, USA). Alfa Aesar (Ward Hill, MA, USA) supplied t-isopropanol-silane. Alexa Fluor 633 Phalloidin was purchased from Life Technologies (Carlsbad, CA, USA). Anti-glucagon, anti-C-peptide and anti-Pdx1 antibodies were supplied by Abcam (Cambridge, MA, USA). Mercodia Insulin ELISA kit was purchased from Mercodia (Uppsala, Sweden). All organic solvents were purchased from Carlo Erba Reagents (Val De Reuil, France).
2. Characterization data of modified HSA-28 peptide

a. Mass spectroscopy analytical data
b. HPLC analytical data
3. Synthetic procedures

General procedure for the synthesis of tert-butylaminopropanoates (1-4).

\[
R^\text{NH}_2 + \text{acrylate} \xrightarrow{\text{a}} R^\text{NH} \text{CH}_2\text{CO}_2\text{CHR}
\]

<table>
<thead>
<tr>
<th>R</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
</tbody>
</table>

Scheme 1. Synthesis of compounds 1-4. Reagents and conditions. (a) EtOH, rt, overnight.

Tert-butyl acrylate (10 mmol) was added dropwise to the appropriate aromatic amines (I, 2,2-diphenylethylamine; II, benzhydrylamine; III, phenethylamine, IV, benzylamine, 10 mmol in EtOH, 5 ml). Stirring at rt was continued overnight. The reaction progress was followed by TLC (DCM/EtOAc 1:1, 1% TEA). After completion of the reaction, EtOH was evaporated under reduced pressure to yield colorless to yellow oil. The compounds were purified by column chromatography using the same conditions as in TLC monitoring.
General procedure for the synthesis tert-butyl 3-((2-methoxy-1-(naphthalen-1-yl)-2-oxoethyl)amino)propanoate (5) and tert-butyl 3-((2-methoxy-1-(naphthalen-2-yl)-2-oxoethyl)amino)propanoate (6)

Scheme 2. Synthesis of compounds 5, 6. Reagents and conditions. (a) KCN, NH₄Cl, NH₄OH (30%), rt, overnight. (b) HCl, reflux, 2h. (c) SOCl₂, MeOH, reflux, 6h. (d) TEA, MeOH, rt, 48h.

Potassium cyanide (28 mmol) and ammonium chloride (28 mmol) were dissolved in 100 ml of aqueous solution of ammonia (30%). The solution was cooled on ice bath to 5 °C. Commercially available α- or β-naphtaldehyde (I and II, respectively, 12 mmol) were then added in three portions with 5 min intervals. The obtained mixture was stirred overnight at rt. Then, the mixture was diluted with 100 ml of water and extracted twice with 100 ml of toluene. The toluene fraction was extracted twice with 60 ml 6N HCl. The aqueous acidic layer was refluxed for 2h, then cooled to 0 °C, affording white to cream crystals that were collected by suction filtration. α- Naphtylphenyl glycine hydrochloride (III) and β-naphtylphenyl glycine hydrochloride (IV), respectively, were taken to the next step without any purification. Next, α- naphtylphenyl glycine hydrochloride or β- naphtylphenyl glycine hydrochloride (III, IV, respectively, 10 mmol) was dissolved in thionyl chloride
(0.05 mol) and the solution was stirred for 1h at rt. After the indicated time, the solution was cooled on ice bath and 100 ml of MeOH and an additional amount of thionyl chloride (0.05 mol) was added. The obtained solution was refluxed for 6 h, cooled, and the solvent was evaporated under reduced pressure. The product was precipitated from a minimum amount of MeOH by the addition of diethyl ether. Methyl 2-amino-2-(naphthalen-1-yl)acetate (V) or methyl 2-amino-2-(naphthalen-2-yl)acetate (VI) were taken to the next step without any purification. Finally, compounds V or VI from the previous step (0.5 mmol) were dissolved in 25 ml of MeOH followed by the addition of an equivalent amount of TEA. Tert-butyl acrylate (0.5 mmol) was dissolved in 10 ml of MeOH and the mixture was added dropwise to solutions of compounds V or VI. The mixture was stirred at rt for 48h. The monitoring of the reaction was performed through TLC (hexane/EtOAc 6:4, 2% TEA). After the indicated time, the solvent was evaporated under reduced pressure and compounds were purified by column chromatography using hexane/EtOAc 6:4, 2% TEA as an eluent to obtain compounds 5 or 6, respectively, as light brown oil.
General procedure for the synthesis of methyl 4-(((3-(tert-butoxy)-3-oxopropyl)amino)methyl)benzoate (7)

\[
\begin{align*}
\text{HO-} & \quad \text{NH}_2 \quad \text{a} \quad \text{O-} & \quad \text{NH}_2 + \text{C=C-O-} \quad \text{b} \quad \text{O-} & \quad \text{NH-} \quad \text{C=C-O-} \quad \text{O-} \\
& & \text{I} & \quad \text{II} & \quad \text{III} & \quad \text{7}
\end{align*}
\]

Scheme 3. Synthesis of compound 7. Reagents and conditions. (a) SOCl$_2$, MeOH, reflux, 6h. (b) TEA, MeOH, rt, overnight.

Commercially available 4-aminomethylbenzoate (I, 0.02 mol) was refluxed in MeOH (50 ml) for 6h in the presence of thionyl chloride (0.04 mol). After the indicated time, the mixture was cooled on the ice bath and the white precipitate was filtered, affording pure methyl 4-(aminomethyl)benzoate (II). In the next step, the obtained compound was reacted with tert-butyl acrylate by a method that was described above, yielding compound 7. Monitoring of the reaction was performed using a mixture of hexane/EtOAc (6:4) in the presence of 1% TEA. The purification of 7 was performed by column chromatography using the same eluent.
General procedure for the synthesis tert-butyl 3-[(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)amino]propanoate (8)

Scheme 4. Synthesis of compound 8. Reagents and conditions. (a) K$_2$CO$_3$, KI, MeCN, reflux, 4h. (b) hydrazine hydrate, EtOH, reflux, 2h. (c) EtOH, rt, overnight

Commercially available 1,2,3,4-tetraisoquinoline (I) (10 mmol) was dissolved in MeCN and treated with n-bromoethylphthalimide (12.5 mmol), potassium carbonate (30 mmol), and potassium iodide (12.5 mmol). The mixture was refluxed for 4h. After the indicated time, the reaction solution was filtered and the filtrate was evaporated under reduced pressure. The residue was dissolved in EtOAc and the solution was acidified with 2N of HCl followed by extraction with water. The pH of the aqueous phase was adjusted to pH 12 with 4N NaOH and extracted with DCM. Evaporation of the organic solvent afforded 2-[(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)isoindoline-1,3-dione (II), which was taken to the next step without any purification. In the next step, the latter compound was dissolved in 40 ml of EtOH and 19 mmol of hydrazine hydrate was added to the solution. The reaction was refluxed for 2h and cooled to rt. The precipitation was gravitationally filtered and the filtrate was concentrated under vacuum. The residue was dissolved in 40
ml EtOAc, filtered, and evaporated again, affording 2-(3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-amine (III), which was taken to the next step without purification. Finally, III was reacted with tert-butyl acrylate by a method described before, affording compound 8. The monitoring of the reaction and the purification by column chromatography were performed under the same conditions mentioned above.
General procedure for the synthesis tert-butyl 3-((2-(3-(isobutylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl ethyl) amino) propanoate (9)

Scheme 5. Synthesis of compound 9. Reagents and conditions. (a) 32% HCl, H₂SO₄, reflux, 48h. (b) NaOH, THF, H₂O, rt, 48h. (c) DCC, HOSu, TEA, DCM, rt, overnight. (d) DCM/TFA (1:1), rt, 1h. (e) K₂CO₃, KI, MeCN, reflux, overnight. (f) hydrazine hydrate, EtOH, reflux, 2h. (g) EtOH, rt, overnight.

Cyclization of commercially available L-phenylalanine (I) (0.015 mmol) was performed by reaction with an excess of paraformaldehyde (2 gr) in the presence of concentrated sulfuric for the corresponding 1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid (II). Briefly, the amino acid was dissolved in 32% hydrochloric acid (50 ml), followed by the
addition of 0.5 ml of sulfuric acid. The solution was refluxed for 48h, cooled, and filtered. The resulting solid was dissolved in a hot mixture of H2O/EtOH (1:1, 25 ml) and basified with ammonium hydroxide (30%) until pH 7.0. The obtained crystals were collected by filtration, washed with two portions of EtOH, affording II, which was taken to the next step without any purification.

In the next step, the secondary amine of II was protected by Boc protecting group to afford 2-(tert-butoxycarbonyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid III. Briefly, 1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid (0.01 mol) and sodium hydroxide (0.015 mol) were dissolved in water and a solution of di-tert-butyl dicarbonate (0.016 mol) in THF (10 ml) was added dropwise. After having been stirred for 48h at rt, the solvent was evaporated, the residue was dissolved in EtOAc (25 ml), and washed with 5% KHSO4 and brine. The organic solvent was dried over sodium sulphate, and evaporated, leading to 2-(tert-butoxycarbonyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (III).

In the next step, commercially available isobutylamine was coupled to a carboxylic moiety of III by DCC coupling reagent and HOSu to obtain tert-butyl 3-(isobutylcarbamoyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate IV, followed by removal of Boc protecting group by TFA, leading to N-isobutyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide V. Isobutylamine (0.006 mol) was dissolved in DCM (50 ml). DCC (0.006 mol), HOSu (0.006 mol), and TEA (0.006 mol) were added to the solution followed by the addition of III (0.006 mol). After having been stirred overnight at rt, the mixture was cooled and filtered, and the filtrate was washed with 2% KHSO4 and 5% NaHCO3, dried over magnesium sulphate, filtered, and evaporated, affording IV tert-butyl 3-(isobutylcarbamoyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate. The compound was
dissolved in a mixture of DCM/TFA 1:1 (20 ml) and the mixture was stirred for 1h, followed by evaporation of solvent, leading to 3-(isobutylcarbamoyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate, V.

In the next step, a secondary amine of V was alkylated with bromoethylphthalimide (VI), followed by the removal of the phatlimide moiety by hydrazine hydrate (VII) and finally, 2-(2-aminoethyl)-N-isobutyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (VII) was reacted with tert-butyl acrylate by the same method described before, affording 9. The purification of 9 was performed through column chromatography using a mixture of hexane/EtOAc (8:2) as an eluent.

General procedure for the synthesis tert-butyl 3-((2-amino-2-oxoethyl)amino)propanoate (10)

```
H₂N
\begin{array}{c}
\text{O} \\
\text{NNH₂}
\end{array}
\quad + \quad \begin{array}{c}
\text{C} \\
\text{OC}
\end{array}
\quad \xrightarrow{a} \quad \begin{array}{c}
\text{H₂N} \\
\text{N} \\
\text{NH}
\end{array}
\begin{array}{c}
\text{C} \\
\text{O}
\end{array}
\begin{array}{c}
\text{N} \\
\text{O}
\end{array}
\begin{array}{c}
\text{C} \\
\text{O}
\end{array}
\begin{array}{c}
\text{C} \\
\text{O}
\end{array}
\begin{array}{c}
\text{C} \\
\text{O}
\end{array}
```


Glycinamide hydrochloride (I, 10 mmol) and TEA (10 mmol) were added to 70 ml of EtOH. The mixture was heated to 40 °C and stirred until all solids were completely dissolved. Then, 10 mmol of tert-butyl acrylate was mixed with 5 ml of EtOH and the mixture was added dropwise to the solution of glycinamide. Stirring at 40 °C was continued for 48h. The reaction progress was followed by TLC (hexane/EtOAc 8:2, 1% TEA) and
visualized in the iodide atmosphere. After completion of the reaction, EtOH was evaporated under reduced pressure to yield a colorless syrup. Compound 10 was purified by column chromatography using the same conditions as those used in TLC monitoring.

Coupling of compounds (1-10) to 3-maleimidopropionic acid followed by removal of t-butoxyl protecting group

3-maleimidopropionic acid was conjugated to compounds 1-10 (as described before) followed by deprotection of the t-butoxyl protecting group by neat TFA. All compounds purified by HPLC (gradient water/MeCN from 100% of water in 80 min, flow = 2 ml/min, $\lambda = 210, \lambda = 254$ nm).
4. NMR spectra images

tert-butyl 3-((2,2-diphenylethyl)amino)propanoate (1)

![Structure of tert-butyl 3-((2,2-diphenylethyl)amino)propanoate (1)]

Yield 79%, pale yellow oil. 1H NMR (CDCl$_3$, 400 MHz): δ 1.356 (s, 9H), δ 2.362 (t, 2H, $J = 6.57$ Hz), δ 2.877 (t, 2H, $J = 6.68$ Hz), δ 3.230 (d, 2H, $J=7.66$ Hz), δ 4.174 (t, 1H, $J = 7.63$ Hz,), δ 7.146 – 7.298 (m, 10H). 13C NMR (CDCl$_3$, 75MHz): δ 28.304, 30.063, 45.592, 51.360, 54.558, 80.878, 128.869, 128.283, 128.940, 142.975, 172.112 ppm.

1H NMR (CDCl$_3$, 400 MHz)

![NMR spectrum of tert-butyl 3-((2,2-diphenylethyl)amino)propanoate (1)]

Scale: 0.3164 ppm/cm, 126.6 Hz/cm
tert-butyl 3-(benzhydrylamino)propanoate (2)

Yield 71%, pale yellow oil. 1H NMR (CDCl$_3$, 400 MHz): δ 1.582 (s, 9H), δ 2.099 (sbr, 1H), δ 2.589 (t, 2H, $J = 6.34$ Hz), δ 2.950 (t, 2H, $J = 6.39$ Hz), δ 4.978 (s, 1H), δ 7.338 – 7.518 (m, 10H). 13C NMR (CDCl$_3$, 75 MHz): 28.443, 36.303, 43.976, 67.581, 80.779, 127.281, 127.591, 128.761, 144.219, 172.496 ppm
1H NMR (CDCl$_3$, 400 MHz)
13C NMR (CDCl$_3$, 75MHz)
tert-butyl 3-(phenethylamino)propanoate (3)

Yield 78%, colorless oil. 1H NMR (CDCl$_3$, 400 MHz): δ 1.411 (s, 9H), δ 2.409 (t, 2H, J = 7.45 Hz), δ 2.75 - 2.912 (m, 6H), δ 7.150 - 7.319 (m, 5H). 13C NMR (CDCl$_3$, 400 MHz): 28.311, 36.127, 36.670, 45.422, 51.300, 80.586, 126.361, 128.686, 128.924, 140.239, 172.218 ppm
1H NMR (CDCl$_3$, 400 MHz)
tert-butyl 3-(benzylamino)propanoate (4)

Yield 73%, colorless oil. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta 1.434\) (s, 9H), \(\delta 2.441\), (t, 2H, J = 6.18 Hz), \(\delta 2.841\) (t, 2H, J = 6.18 Hz), \(\delta 3.780\) (s, 2H), \(\delta 7.175\) -7.4 (m, 5H). \(^1\)C NMR (CDCl\(_3\), 400 MHz): 28.413, 36.156, 45.033, 54.128, 80.786, 127.220, 128.402, 128.668, 140.487, 172.474 ppm.
1H NMR (CDCl$_3$, 300 MHz)

13C NMR (CDCl$_3$, 75MHz)
tert-butyl 3-((2-methoxy-1-(naphthalen-1-yl)-2-oxoethyl)amino)propanoate (5)

Yield 21%, yellow oil. 1H NMR (CDCl$_3$, 300 MHz): δ 1.412 (s, 9H), δ 2.428 (t, 2H, $J = 6.43$ Hz), δ 2.729-2.980 (m, 2H), δ 3.644 (s, 3H), δ 5.107 (s, 1H), δ 7.374- 7.600 (m, 4H), δ 7.786 (dbr, 1H, $J = 8.08$ Hz), δ 7.837 (dbr, 1H, $J = 8.08$ Hz), δ 8.213 (dbr, 1H, $J = 8.08$ Hz). 13C NMR (CDCl$_3$, 75 MHz): δ 28.396, 36.376, 43.954, 52.557, 62.848, 80.864, δ 123.959, 125.628, 126.741, 129.098, 131.806, 134.403, 172.219,173.925 ppm.

1H NMR (CDCl$_3$, 300 MHz)
tert-butyl 3-((2-methoxy-1-(naphthalen-2-yl)-2-oxoethyl)amino)propanoate (6)

Yield 29%, brown oil. 1H NMR (CDCl$_3$, 300 MHz): δ 1.452 (s, 9H), δ 2.464 (t, 2H, J = 6.52 Hz), δ 2.710-2.900 (m, 2H), δ 3.689 (s, 3H), δ 4.567 (s, 1H), δ 7.423 - 7.550 (m, 3H), δ 7.773 - 7.900 (m, 4H). 13C NMR (CDCl$_3$, 75 MHz): δ 27.923, 35.786, 43.031, 52.065, 65.509, 80.384, 123.959, 124.964, 125.962, 126.066, 126.564, 127.481, 127.799, 128.354, 132.994, 133.129, 135.124, 171.614, 172.957 ppm.
1H NMR (CDCl$_3$, 300 MHz)
methyl 4-(((3-(tert-butoxy)-3-oxopropyl)amino)methyl)benzoate (7)

Yield 57%, colorless syrup. 1H NMR (CDCl$_3$, 300 MHz): δ 1.429 (s, 9H), δ 2.432 (t, 2H, J = 6.25 Hz), δ (t, 2H, J = 6.25 Hz), δ 3.835 (s, 2H), δ 3.883 (s, 3H), δ 7.384 (d$_{br}$, 2H, J = 7.84 Hz), δ 7.974 (d$_{br}$, 2H, J = 7.84 Hz). 13C NMR (CDCl$_3$, 75 MHz): 28.394, 36.110, 45.061, 52.287, 53.715, 80.853, 128.177, 129.073, 129.992, 145.995, 167.302, 172.405 ppm.

1H NMR (CDCl$_3$, 300 MHz)
Yield 35%, pale yellow oil. 1H NMR (CDCl$_3$, 400 MHz): δ 1.404 (s, 9H), δ 2.424 (t, 2H, J = 6.62 Hz), δ 2.656 (t, 2H, J = 6.05 Hz), δ 2.736 (t, 2H, J = 5.81 Hz), δ 2.803 (t, 2H, J = 6.05 Hz), δ 2.837 – 2.920 (m, 4H), δ 3.629 (s, 2H), δ 6.966 – 7.035 (m, 1H), δ 7.042 – 7.150 (m, 3H). 13C NMR (CDCl$_3$, 100 MHz): δ 28.038, 29.092, 36.025, 45.422, 46.626, 51.060, 56.109, 57.660, 80.361, 125.503, 126.029, 126.496, 128.554, 134.327, 134.753, 171.975 ppm.
1H NMR (CDCl$_3$, 400 MHz)

Scale: 0.3087 ppm/cm, 123.5 Hz/cm
13C NMR (CDCl₃, 100MHz)

Yield 24%, pale yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 0.742 (dd, J = 3.59 Hz, J = 2.44 Hz, 6H), δ 1.413 (s, 9H), δ 1.435 (s, 2H), δ 2.330-2.501 (m, 3H), δ 2.565 - 2.712 (m, 3H),
\(\delta 2.710 - 2.799 (m, 2H), \delta 2.826 (t, J = 6.19 \text{ Hz}, 2H), \delta 2.854 - 2.953 (m, 1H), \delta 3.045 (d, J = 6.60 \text{ Hz}, 2H), \delta 3.420 (t, 1H, J = 6.93 \text{ Hz}), \delta 3.672 (d, J = 14.89 \text{ Hz}, 1H), \delta 3.894 (d, J = 14.89 \text{ Hz}, 1H), \delta 7.00 - 7.180 (m, 4H). \)

\(^{13}\text{C} \text{ NMR (CDCl}_3, 75 \text{ MHz): } \delta 19.947, 28.0372, 28.473, 28.653, 35.304, 45.099, 46.395, 47.055, 51.888, 54.163, 62.761, 80.657, 126.159, 126.183, 126.907, 128.0149, 172.034, 173.144 \text{ ppm.} \)

\(^1\text{H} \text{ NMR (CDCl}_3, 400 \text{ MHz)} \)

[Image of NMR spectrum]

Scale: 0.4177 ppm/cm, 167.1 Hz/cm
tert-butyl 3-((2-amino-2-oxoethyl)amino)propanoate (10)

Yield 44%, colorless syrup. 1H NMR (CDCl$_3$, 300 MHz): δ 1.459 (s, 9H), δ 1.924 (sbr, 1H), δ 2.413 (t, $J = 6.22$ Hz, 2H), δ 2.853 (t, $J = 6.06$ Hz, 2H), δ 3.275 (s, 2H), δ 6.325 (sbr, 1H), δ 7.279 (sbr, 1H). 13C NMR (CDCl$_3$, 75 MHz): δ 28.226, 35.543, 45.354, 52.094, 81.189, 172.102, 174.397 ppm.
1H NMR (CDCl$_3$, 300 MHz)
13C NMR (CDCl$_3$, 75 MHz)
5. Mass spectroscopy analytical data

tert-butyl 3-((2,2-diphenylethyl)amino)propanoate (1)
tert-butyl 3-(benzhydrylamino)propanoate (2)
tert-butyl 3-(phenethylamino)propanoate (3)

![Chemical structure of tert-butyl 3-(phenethylamino)propanoate](image)

--- End Of Report ---
tert-butyl 3-(benzylamino)propanoate (4)
tert-butyl 3-((2-methoxy-1-(naphthalen-1-yl)-2-oxoethyl)amino)propanoate (5)
tert-butyl 3-((2-methoxy-1-(naphthalen-2-yl)-2-oxoethyl)amino)propanoate (6)
methyl 4-(((3-(tert-butoxy)-3-oxopropyl)amino)methyl)benzoate (7)
tert-butyl 3-((2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)amino)propanoate (8)
tert-butyl 3-((2-(3-(isobutylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl) ethyl) amino) propanoate (9)
tert-butyl 3-((2-amino-2-oxoethyl)amino)propanoate (10)
6. MALDI mass spectra of PAMAM dendrimer

Figure S1. MALDI mass spectra of PAMAM dendrimer.
7. HSA-28D characterization

Figure S2. *UV absorption measurement.* “Naked” dendrimer (blue line) and HSA-28D (red line) both at a concentration of 0.175 mM in PBS, pH=7.4, were placed in the plate. UV spectra were recorded at 250-500 nm. The black line is a blank. An Agilent Cary 300 UV-Vis spectrophotometer with a slit of 4nm and a scan speed of 400 nm min⁻¹ and a quartz cuvette of 1 cm were used.
8. Estimation of the percentage of dendrimer coating by peptidomimetics

A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 kDa</td>
<td></td>
</tr>
<tr>
<td>130 kDa</td>
<td></td>
</tr>
<tr>
<td>100 kDa</td>
<td></td>
</tr>
<tr>
<td>70 kDa</td>
<td></td>
</tr>
<tr>
<td>55 kDa</td>
<td></td>
</tr>
</tbody>
</table>

1. HSA-28D
2. PAMAM coated only by 3-maleimidopropionic acid
3. HSA-28D 1 (PAMAM coated by compound 1)
4. HSA-28D 2 (PAMAM coated by compound 2)
5. HSA-28D 3 (PAMAM coated by compound 3)
6. HSA-28D 4 (PAMAM coated by compound 4)
7. HSA-28D 5 (PAMAM coated by compound 5)
8. HSA-28D 6 (PAMAM coated by compound 6)
9. HSA-28D 7 (PAMAM coated by compound 7)
10. HSA-28D 8 (PAMAM coated by compound 8)
11. HSA-28D 9 (PAMAM coated by compound 9)
12. HSA-28D 10 (PAMAM coated by compound 10)

B

Figure S3. Gel electrophoresis of coated PAMAMs. A. Samples were loaded to Glycine 6% SDS PAGE gel, run against TTS running buffer, and stained using a silver staining procedure. B. Section image of the gel electrophoresis of PAMAM dendrimer, which was conducted as a control for the experiment described above.
9. Lack of biological effect of coated by peptidomimetics PAMAM dendrimer

Figure S4. The effect of coated PAMAMs on the rate of INS-1E cell proliferation. INS-1E cells were seeded in 24-well plates and incubated for 72h with the medium supplemented with HSA-28D 1-10 (1-10⁻³µg/ml). After the incubation time, the cells were detached by trypsin, colored using Trypan blue and counted. The results are presented as the percentage compared to non-treated cells, n=6, *p≤0.05. MEAN±SE.