Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Tailoring of Carbon Nanotubes for the adsorption of heavy metal ions: Molecular dynamics and experimental investigations

P. Sahu^{1, 2}, A.K. Singha Deb^{1, 2}, Sk. M. Ali^{1,2*}, K.T. Shenoy¹, S. Mohan¹

¹Chemical Engineering Division, Bhabha Atomic Research Center, Mumbai, Maharashtra, India 400085

² Homi Bhabha National Institute, Mumbai, Maharashtra, India 400094

*musharaf@barc.gov.in

Fig S1. RDF profiles for (a) $Cd^{++}-H_2O$ and (b) $Cd^{++}-NO_3^-$ and corresponding coordination profiles for (c) $Cd^{++}-H_2O$ and (d) $Cd^{++}-NO_3^-$ in the aqueous phase in absence of CNT adsorbent.

Fig. S2. FTIR spectra of MWCNT-COOH and MWCNT-SH

The presence of peaks at 3445 and 1650 cm⁻¹ are related to the stretching vibrations of v(OH) and v(C=O) of the carboxyl groups (COOH), respectively. Symmetric and asymmetric methylene stretching bands at 2935 and 2891 cm⁻¹, respectively, are observed to be present in the MWCNTs-COOH. It is assumed that defective sites on the sidewall of MWCNTs contain these groups. These characteristic peaks are presents for all the CNTs. The vibrational peak for C-S at 650-700 cm⁻¹ along with amidic peak around 1642 cm⁻¹ in the spectrum of MWCNT-SH suggest the attachment of –SH group through the amidic linkage with carboxyl of MWCNT-COOH and amine of cysteamine.