Supporting Information for

Tin dioxide quantum dots coupled with graphene enabled high-performance bulk-silicon Schottky photodetector

Zhaoqiang Zheng¹†, Jiandong Yao²†, Lianfeng Zhu³, Wei Jiang³, Bing Wang⁴, Guowei Yang²* and Jingbo Li¹.5.6*

¹School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.

²State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.

³Graduated School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong, P. R. China.

⁴Institute of Micro-nano Optoelectronic Technology, Shenzhen Key Lab of Micro-nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, Guangdong, P. R. China.

⁵State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.

⁶State key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
† These authors contributed equally to this work.

*Corresponding authors: stsygw@mail.sysu.edu.cn and jbli@semi.ac.cn
Figure S1. Schematic diagrams showing the fabrication process of the SnO$_2$-QDs/graphene/Si heterojunction photodetector.

1. CVD growth of graphene
2. Remove SiO$_2$ and expose Si
3. Spin-coating of PMMA
4. Fabricate Au electrode
5. Transfer graphene
6. Spin-coating of SnO$_2$-QDs
Figure S2. (a) Dark I-V characteristic of the graphene/Si photodetector. By fitting the I-V curve with equation 1, the reverse saturation current (I_s) is estimated to be 5.74 µA. As the area of the device is $300\times300\ \mu m^2$, the temperature is 300 K, the effective Richardson constant is $112 \ A\ cm^{-2}\ K^{-2}$, based on equation 2, the Schottky barrier height (Φ_b) is calculated to be 0.19 eV. (b) Dark I-V characteristic of the SnO$_2$-QDs/graphene/Si photodetector and fitting with equation 1. The Schottky barrier height (Φ_b) is calculated to be 0.21 eV. (c) I-V curves of the graphene/Si photodetector in the dark and under 532 nm light illumination with various light intensities.
Figure S3. Voltage-dependent photocurrent upon illumination with 532 nm light: (a) graphene/Si photodetector; (b) SnO₂-QDs/graphene/Si hybrid photodetector.
Figure S4. Photocurrent evolved with the thickness of the SnO$_2$-QDs film under the same incident intensity (29 μW/cm2). The graphene/Si device without SnO$_2$-QDs (the thickness of the SnO$_2$-QDs film is 0 nm) is also shown for comparison.
Figure S5. Light intensity dependent external quantum efficiency (EQE) of the graphene/Si and hybrid SnO$_2$-QDs/graphene/Si photodetectors at $V_{ds} = -5$ V.
Figure S6. Stability of the SnO$_2$-QDs/graphene/Si photodetector. (a) I-V characteristics of the SnO$_2$-QDs/graphene/Si photodetector before and after exposing to ambient environment for two months. (b) Photoswitching curves of the SnO$_2$-QDs/graphene/Si photodetector before and after exposing to ambient environment for two months.
Figure S7. UV-vis-NIR absorption curve of the SnO$_2$-QDs.

Figure S8. Reflection spectra of the graphene/Si film and SnO$_2$-QDs/graphene/Si film.
Figure S9. The energy band diagrams for graphene and n-Si in the dark and light.