Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018

	Entry name	Gene names		Predicted Pattern	Number of cofactors		EC number	Subcellular location		Involvement in disease	Gene ontology (biological process)
075027	ABCB7_HUMAN	ABCB7 ABC7	ATP-binding cassette sub-family & member 7, mitochondrial (ATP-binding cassette transporter 7) (ABC transporter 7 protein)	Unknown	Fe ₂ S ₂	Substrate - transport		Mitochondrion	Yes	DISEAS: Anemia, sideroblastic, spinocerebellar ataxia (ASAT) (MM-301310): A X-linke recessive disorder characterized by an infantile to early childhood onset of non- nogressive cerebellar ataxia and mild anemia, with hypochromia and microcytosis. (ECO:0000269) PubMed: 11395835, ECO:0000269) PubMed: 11505011, ECO:0000269) PubMed: 11393825, ECO:0000269) PubMed: 22398176), Anten-The disease is caused by mutations affecting the gene represented in this entry.	l cellular iron ion homeostasis (GO:0006879); transmembrane transport [GO:0055085]; transport (GO:0006810]
P61221	ABCE1_HUMAN	ABCE1 RLI RNASEL1 RNASELI RNS4I OK/SW-cl.40	ATP-binding cassette sub-family E member 1 (2'-5'-oligoadenylate-binding protein) (HuHP68) (RNase L inhibitor) (Ribonuclease 4 inhibitor) (RN54)	C16-C21-C25-C29-C55- C58-C61-C65	2 × Fe ₄ S ₄	Unknown		Cytoplasm, Mitochondrion, Cell membrane	Yes		negative regulation of endoribonuclease activity [G0:0060702]; regulation type i Interferon-mediated signaling pathway [G0:0060338]; ribosomai sub export from nucleus [G0:000064]; translational initiation [G0:0006413]; translational termination [G0:0006415]; viral process [G0:0016032]
P21399	ACOC_HUMAN	ACO1 IREB1	Cytoplasmic aconitate hydratase (Aconitase) (EC 4.2.1.3) (Citrate hydro-lyase) (Ferritin repressor protein) (Iron regulatory protein 1) (IRP1) (Iron-responsive element-binding protein 1) (IRE-BP 1)	C437-C503-C506	Fe ₄ S ₄	Substrate - sensor	4.2.1.3	Cytoplasm	No		cellular iron ion homeostasis [GO:0006879]; citrate metabolic process [GO:0006101]; intestinal absorption [GO:0050892]; post-embryonic development [GO:0009791]; regulation of translation [GO:006047]; respo to iron(II) ion [GO:0010040]; tricarboxylic acid cycle [GO:0006099]
Q99798	ACON_HUMAN	ACO2	Aconitate hydratase, mitochondrial (Aconitase) (EC 4.2.1.3) (Citrate hydro-lyase)	C385-C448-C451	Fe ₄ S ₄	Unknown	4.2.1.3	Mitochondrion	No	DISEASE: Infantile cerebellar-retinal degeneration (ICR0) [MIM:614559]: A severe autosomal recessive neurodegenerative disorder characterized by onset between ages 2 and 6 months of truncal hypotonia athetics, selaves, and ophthalmologic abnormalities, particularly optic atrophy and retinal degeneration. Affected individuals show profound psychomotor retactation, with only some achieving rolling, sitting, or recognition of family. Brain MRI shows progressive cerebral and cerebellar degeneration. (ECO000269] PubMed:2325087; ECO000269] PubMed:23551951]. Note=The disease is caused by mutations affecting the gene represented in this entry; DISEASE: Optic atrophy (JOPA) [MIM:615289]: A condition that features progressive visual loss in association with optic atrophy. Atrophy of the optic disk indicates a declicatory in the number of never fibers which arise in the retina and converge to form the optic disk, optic nerve, optic chiasm and optic tracts. [ECO.0000269]PubMed:2351951]. Note=The disease is caused by mutations affecting the gene represented in this entry.	citrate metabolic process [G0.0006101]; generation of precursor metaboli and energy [G0.0006091]; liocitrate metabolic process [G0.0006102]; live development [G0.0000889]; response to location stress [G0.0035900]; tricarboxylic acid cycle [G0.0006099]
P10109	ADX_HUMAN	FDX1 ADX	Adrenodoxin, mitochondrial (Adrenal ferredoxin) (Ferredoxin-1) (Hepatoredoxin)	C106-C112-C115-C152	Fe ₂ S ₂	Electron transfer		Mitochondrion	No		C21-steroid hormone biosynthetic process [G0:0006700]; cellular response cAMP [G0:0071320]; cellular response to forskolin [G0:190422]; choleste metabolic process [G0:000220], hormone biosynthetic process [G0:0042464]; small molecule metabolic process [G0:0044281]; sterol metabolic process [G0:001527]
Q96NN9	AIFM3_HUMAN	AIFM3 AIFL	Apoptosis-inducing factor 3 (EC 1) (Apoptosis-inducing factor-like protein)	C109-H111-C128-H131	Fe ₂ S ₂ (predicted)	Unknown	1	Mitochondrion, Nucleus	No		execution phase of apoptosis [GO:0097194]
Q06278	AOXA_HUMAN	AOX1 AO	Aldehyde oxidase (EC 1.2.3.1) (Aldehyde oxidase 1) (Azaheterocycle hydroxylase) (EC 1.17.3)	C44-C49-C52-C74; C114- C117-C149-C151	2 × Fe ₂ S ₂	Electron transfer	1.2.3.1; 1.17.3	Cytoplasm	No		drug metabolic process [GO:0017144]; oxidation-reduction process [GO:0055114]; vitamin 86 metabolic process [GO:0042816]; xanthine catal process [GO:0009115]
Q9Y3E2	BOLA1_HUMAN	BOLA1 CGI-143	BolA-like protein 1 (hBolA)	Unknown	Fe ₂ S ₂ shared with GLRX	Substrate - biosinthesis		Mitochondrion	No		proces (00.000123)
Q9H3K6	BOLA2_HUMAN	BOLA2 BOLA2A My016; BOLA2B	BolA-like protein 2	Unknown	Fe ₂ S ₂ shared with GLRX	Substrate - biosinthesis		Cytoplasm, Nucleus	No		[2Fe-2S] cluster assembly [GO:0044571]; interleukin-12-mediated signaling pathway [GO:0035722]; protein maturation by iron-sulfur cluster transfer [GO:0097428]
Q53533	BOLA3_HUMAN	BOLA3	BolA-like protein 3	Unknown	Fe ₂ S ₂ shared with GLRX	Substrate - biosinthesis		Mitochondrion	No	OVESAES: Multiple mitochondrial dysfunctions syndrome 2 with hyperghycinemia (MMDS2) [MMC4209]: A savee disorder of systemic energy metabolian, resulting in weakness, respiratory failure, lack of neurologic development, lacitic acidoxis, hyperghycinemic and early desh Some parlients show failure to thrive, polimonary hypertension, hypotonia and erit/dash Some parlients faw fuel line is acid synthesis efficiency of the 2-oxocid dehypergenases, defective lipoki acid synthesis efficiency of the 2-oxocid dehypergenase, defective lipoki acid synthesis efficiency of the 2-oxocid dehypergenase lipoki acid synthesynthesis efficiency of the 2-oxocid d	
Q5VV42	CDKAL_HUMAN	CDKAL1	Thromyladenourie RNA methylhiotranderare (EC.2.8.4.5) (CDK5 regulatory subunit associated protein 1-like 1) (rRNA-1(6)A37 methylthiotransferase)	C73-C109-C138; C214- C218-C221	$2 \times Fe_4S_4$	Catalytic	2.8.4.5	Endoplasmic reticulum	Yes	DISEASE: Diabetes mellitus, non-inculin-dependent (NIDDM) [MIN:22853]; A multificatioil dialorent of glucoss bemostrais: caused by lack of sensitivity to the body's own insulin. Affected individuals usually have an obsess body habitus and manifestations of ametabolic synotymone characterized by diabetes, isolanic hypoteneosion and hypertrighyendenia. The disease results in long-term complications that affect the equ. kidneys, news, and body resists. (ECO.0000269) [PubMed:37460997, ECO.0000269] PubMed:37463246), Note-Disease susceptibility is associated with variations affecting the gene represented in this entry.	maintenance of translational fidelity [GO:1990145]; tRNA modification [GO:0006400]
	CISD1_HUMAN		CDGSH iron-sulfur domain-containing protein 1 (MitoNEET)	C72-C74-C83-H87	Fe ₂ S ₂	Substrate - biogenesis		Mitochondrion	Yes		regulation of cellular respiration [GO:0043457]
Q8N5K1	CISD2_HUMAN	CISD2 CDGSH2 ERIS ZCD2	CDGSH iron-suffur domain-containing protein 2 (Endoplasmic reticulum intermembrane anali protein) (MiNetET-related 1 protein) (Miner1) (Nutrient- deprivation autophagy factor-1) (NAF-1)	C99-C101-C110-H114	Fe ₂ S ₂	Unknown		Endoplasmic reticulum, Mitochondrion	Yes	DISEASE: Wolfram syndrome 2 (WFS2) [MM:604928]: A rare disorder characterized by juvenie-onset insulind-ependent diabetes mellitus with optic atrophy. Other manifestations include diabetes insipidus, sensorineural deafness, dementia, psychiatric illeress. WFS2 patients additionally show a strong bleeding tendency and gastrointestinal ulceration. Diabetes insipidus may be absent. (EC0:0000269) PubMed:17364994). Note=The disease is caused by mutations affecting the gene represented in this entry.	[GO:0010259]; regulation of autophagy [GO:0010506]
POC7P0	CISD3_HUMAN	CISD3	CDGSH iron-sulfur domain-containing protein 3, mitochondrial (MitoNEET-related protein 2) (Miner2)		2 × Fe ₂ S ₂	Unknown		Mitochondrion	No		
Q96SZ6	CK5P1_HUMAN	CDK5RAP1 C20orf34 CGI-05 HSPC167		C100-C109-H113 C109-C145-C183; C258- C262-C265	2 × Fe ₄ S ₄	Catalytic		Unknown	No		brain development [GC 0007420]; mitochondrial tRNA modification [GC:0070900]; negative regulation of cyclin-dependent protein serine/hreonine kinase activity [GC:0045736]; positive regulation of mitochondrial transition [GC:007131]; positive regulation of transitional fidelity [GC:0045903]; regulation of neuron differentiation [GC:0045664]
Q9Y471	CMAH_HUMAN	CMAHP CMAH	Inactive cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMP- NeuAc hydroxylase-like protein) (Cytidine monophosphate-N-acetylneuraminic acid hydroxylase pseudogene)	Unknown	Fe ₂ S ₂	Unknown		Cytoplasm, Nucleus	Yes		regulation of Wnt signaling pathway [GO:0030111]
Q6FI81	CPIN1_HUMAN	CIAPIN1 CUA001 PRO0915	Anamorsin (Cytokine-induced apoptosis inhibitor 1) (Fe-S cluster assembly protein DRE2 homolog)	C237-C246-C249-C251	2 × Fe ₂ S ₂	Substrate - biogenesis		Cytoplasm, Mitochondrion, Nucleus	Yes		apoptotic process [GO:0006915]; hemopoiesis [GO:0030097]; iron-sulfur cluster assembly [GO:0016226]; negative regulation of apoptotic process [GO:0043066]

18 Q5	6FC9	DDX11_HUMAN	DDX11 CHL1 CHLR1 KRG2	ATP-dependent DNA helicase DDX11 (EC 3.6.4.12) (CHL1-related protein 1) (hCHLR1) (DEAD)/H-Box protein 11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2)	C267-C285-C315-C350	Fe_4S_4	Structural - Regulatory	3.6.4.12	Cytoplasm, Nucleus	No	DISEASE: Warsaw breakage syndrome (WBRS) [MIM:613398]: A syndrome characterised by severe microcephalp, pre- and postnatal growth retardation, facial dynamorphism and abnormal sikin giveneration. Additional features include high arched palate, coloborna of the right optic disk, deafness, ventricular septal defect, totes and palate, coloborna of the right optic disk, deafness, ventricular septal defect, totes and effective set and the result optic disk, deafness, ventricular septal defect, totes and effective set and the right optic disk, deafness, ventricular septal defect, totes and effective set and the result optic disk deafness, ventricular set and the results and principal memory and using rhomatic chall on defective set and backages, restruc- ed (CO000269) PubMed: 2033177, for the result of the result o	cellular response to bleomycin [G0:1904976]; cellular response to cliplatin [G0:007213]; cellular response to DNA damage strutuus [G0:00874]; cellular response to bydroxyme [G0:0005211]; GNA duplex unwinding [G0:003258]; DNA repair [G0:0005281]; G-quadruplex DNA unwinding [G0:003258]; DNA repair [G0:0003271]; DNA repairs regulation of protein binding [G0:0032591]; nucleater schoradii noganitariano fic0:1990701]; postible regulation of chromatin binding [G0:0035581]; postible regulation of double-strand break repair [G0:2003781]; postible regulation of andodearybrendease activity [G0:003279]; postible regulation of sister chromatic cohesion [G0:0032878]; postible regulation of transcription of nuclear large RNA polymerase pomoter [G0:199383]; replication fork processing [G0:0031297]; sister chromatic i cohesion [G0:0007062]; transcription, DNA-templated [G0:0036531]; viral process [G0:0016332]
19 Q9	2771	DDX12_HUMAN	DDX12P CHLR2 DDX12	Putative ATP-dependent RNA helicase DDX12 (EC 3.6.4.13) (CHL1-related protein 2) (hCHLR2) (DEAD/H box protein 12)	C286-C304-C334-C369	Fe ₄ S ₄	Structural - Regulatory	3.6.4.13	Nucleus	No		cell cycle [GO:0007049]; nucleobase-containing compound metabolic process [GO:0006139]
20 P5	1530	DNA2_HUMAN	DNA2 DNA2L KIAA0083	DNA reglezation ATP-dependent helicase/nuclease DNA2 (IDNA2 (IDNA2 reglezation ATP-dependent helicase) kike homologi (Inclusic: DNA reglezation nuclease DNA2 (EC 3.1); DNA replication ATP-dependent helicase DNA2 (EC 3.6.4.12)]	C136-C393-C396-C402	Fe ₄ S ₄	Structural - Regulatory	3.1; 3.6.4.12	Mitochondrion, Nucleus	No	DISEASE Progressive external ophthalmoptegia with mitochondrial DNA deletions, autosmal dominans, 6/EPGA0 [MMK51556]; diodrer characterized by muscle weakness, mainly affecting the lower limbs, external ophthalmoptegia, exercise inchildroad or adulthood and show slow progression. (ECC 000026) PUMMed 2332259), Note=The disease is caused by mutations affecting the gene represented in this entry. DISEASE: Seckel syndrome 8 (SCL08) [MMK615800] a rear autosmal microssive disorder characterized by proportionate dwarfs of prenatal onset associated with low birth weight, growth retardation. (ECC 000026) PUMMed 23832593), Note=The disease is caused by mutations affecting the gene represented in this entry. DISEASE: Seckel syndrome 8 (SCL08) [MMK615800] (ECC 00002069) PUMMed 243835950], Note=The disease is caused by mutations affecting the gene represented in this entry.	Involved in DNA repair (GO.0000731); G-quadrupke DNA unwinding (GO.0044806); Intochondrial DNA repair (GO.004300); Intochondrial DNA replication (GO.0006264); Intoitic telomere maintenance via semi-conservate replication (GO.20099); Intoitic aid phosphodisters to noth hydrolysis (GO.000305); positive repulation of DNA replication (GO.0045740); regulation of signal transduction by pS3 class mediator (GO.201976); strand
21 Q5	BZG8	DPH1_HUMAN	DPH1 DPH2L DPH2L1 OVCA1	243-amino-3-carboxypropyl/hitidine synthase subunit 1 (£C 25.1.08) (Diphthamide biosynthesis protein 1) (Diphtheria toxin resistance protein 1) (Ovarian cance-ascolated gene 1 postenio (G-adenosyl-L-methionine:L-histidine 3- amino-3-carboxypropyltransferase 1)	C115-C219-C347	Fe ₄ S ₄	Catalytic	2.5.1.108	Cytoplasm, Nucleus	No	DISEASE: Developmental delay with short stature, dysmorphic features, and sparse hair (DEDSSH) (MIM-616901): An autosomal recessive syndrome characterized by Intellectual disability, short stature, and cranidacial and ectodermal anomalies including scaphocephaly with or without cranisorysnostosis, promiment forehead, sparse evebrows and hair, hypoplastic toenalis and, in some case, dental anomalies. (ECO.0000269) PubMed 25558065, ECO.0000269) PubMed 26220823). Note=The disease is caused by mutations affecting the gene represented in this entry.	cell proliferation (GO:0002283); peptidyl-diphthamide biosynthetic process from peptidyl-histidine [GO:0017183]
22 Q9	BQC3	DPH2_HUMAN	DPH2 DPH2L2	2-(3-amino-3-carboxypropyl)histidine synthase subunit 2 (EC 2.5.1.108) (Diphthamide biosynthesis protein 2) (Diphtheria toxin resistance protein 2) (S- adenosyl-L-methionine:L-histidine 3-amino-3-carboxypropyltransferase 2)	C88-C341	Fe ₄ S ₄	Catalytic	2.5.1.108	Unknown	No		peptidyl-diphthamide biosynthetic process from peptidyl-histidine [GO:0017183]
23 P2			POLD1 POLD	DNA polymerase delta catalytic subunit (EC 2.7.7.7) (EC 3.1.11-) (DNA polymerase subunit delta p125)	c1076	Fe ₄ S ₄		2.7.7.7; 3.1.11	Nucleus	No	premaignant lesion (adenoma) to invasive adenocarcinoma. Risk factors, for cancer of the colon and rectum include colon polys, long-standing ulevaritve colits, and genetic family history. (ECO.0000269) PubMed:23263409, ECO.0000269 PubMed:24501277). Note-Diesea succeptibility is associated with variations affecting the gene represented in this entry. DISEASE: Mandibular hypoplasia, deafness, progerod features, and lipodytrophy syndrome (MDPI) [MMKES381]. An autosmal dominant systemic disorder characterized by prominent loss of subcutaneous fat, metabolic abnormalities including insultine sistance and diabetes mellitus, sciendermatus sista, and a facial appearance characterized by mandibular hypoplasia. Sensorineural deafness occurs late in the first or scool decades of IIIe. (ECO.0000269) PubMed:23770680, Note-The disease is caused by mutations affecting the gene represented in this entry.	[G0:0022299]; DNA ligation [G0:0002266]; DNA repair [G0:0005281]; DNA explication [G0:000526]; DNA replair [G0:000531]; ENA synthesis involved in DNA repair [G0:0000731]; Enty add homeostatis [G0:005038]; mismatch repair [G0:0000731]; Enty add homeostatis [G0:000528]; rueloottid=excision repair, DNA linckion [G0:000529]; rueloottid=excision repair, DNA linckion [G0:000529]; rueloottid=excision repair, DNA linckion [G0:000529]; rueloottid=excision repair, DNA linckion [G0:000529]; rueloottid=excision repair [G0:0006283]; [G0:000529]; transcription-coupled nucleotid=excision repair [G0:000528]; transferiotion-coupled nucleotid=excision repair [G0:000528]; translesion synthesis [G0:0019985]
24 Q0	7864	DPOE1_HUMAN	POLE POLE1		C2221-C2224-C2236- C2238	Fe ₄ S ₄	Structural - Regulatory	2.7.7.7	Nucleus	No	DSEASE: clonectal cancer 12 (CRC512) [MMc51508]; A complex disease characterized by malgonat lesions acting from the inner wall of the large intestine (the choin and the return. Genetic alterations are often associated with progression from permalignant lesions actions are often associated with progression from permalignant lesions active strained by a light-genetic and permitting the context development of colorestal adenomas and carcinomas, with a variable tendency to develop multiple and large turnors. On soit is usually before gad 49 ears. The histologic features of the turnors are unremarkable. (ECO:0000269) PubMed:23263490, ECO:0002691 PubMed:23501277, CO:00002691 PubMed:23560471, ECO:00002691 PubMed:23501277, SUISASE: Facial permits associated with haracterized by mit grade permits in history (SISASE: Facial permits). A syndrome characterized by a gardy helihood and results in availabil stort starture (FILS) [MMc6151391, A syndrome characterized by a gardy helihood and results in availabil stort starture individually since birth, and immunodeficiency resulting in recurrent infections. Growth impairment is observed during early childhood and results in availabil short starture individually (ECO:0000269) PubMed:232230003). Note=The disease is caused by mutations affecting the gene represented in this entry.	[GO:0045004]; DNA synthesis involved in DNA repair [GO:0000731]; embryonic organ development [GO:0048568]; G1/S transition of mitotic cell cycle

25 P09884	DPOLA_HUMAN	POLA1 POLA	DNA połymerase alpha catałytic subunit (EC 2.7.7.7) (DNA połymerase alpha catałytic subunit p180)	C1348-C1353-C1371- C1374	$Fe_{\alpha}S_{\alpha}$	Structural - Regulatory	2.7.7.7	Cytoplasm, Nucleus	No	DISSASE: Pigmentary dioder, reticulate, with systemic manifestations, X-linked (PDR) [MMI:301220]: A X-linked recessive disorder characterized by recurrent infections and serial infimumation in various cargos: Diffuse sinh hypergementation with a distinctive reticulate pattern is universally evident by early childhood. This is later followed in many patients by hypothetics, concell influmentation and scaring, enterocolisit and the second second second second second second second second resembles influmentary boxel disease, mix America usering enterocolisit facts with the second second second second second second second second and/se with from the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second facts and the second second second second second second second second facts and the second second second second second second second second facts and the second second second second second second second second facts and the second second second second second second second second facts and the second second second second second second second second facts and the second second second second second second second facts and the second second second second second second second second facts and the second second second second second second second second second facts and the second second facts and the second second second second secon	replication, synthesis of RNA primer [GO:0006269]; DNA replication initiation [GO:0006270]; DNA strand elongation involved in DNA replication
26 Q12882	DPYD_HUMAN	DPYD	Dihydropyrimidine dehydrogenase [NADP(+)] [DHPDHase] (DPD) [EC 1.3.1.2] (Dihydrothymine dehydrogenase) (Dihydrouracil dehydrogenase)	C79-C82-C87-C91; C130- C136-C140-C156; C953- C956-C959-C963; C986- C989-C992-C996	$4 \times Fe_4S_4$	Unknown	1.3.1.2	Cytoplasm	No	DISEASE: Dihydropyrimidine dehydrogenase deficiency (DPYDD) [MIM.274270]: A metabolic disorder with harge phenotypic variability, ranging from no symptoms to a consulsive disorder with motor and metal retardations. It is characterized by persistent unany excretion of excessive amounts of uracit, thymine and 5-hydroxymethyluracit. Patients suffering from this disease how a sever ereaction to the anticance drug 5- finorouracit. [EC0000269] PubMet:14702039, EC0.0000269] PubMet:1571044, EC0.0000269] PubMet:2562540, EC0.0000269] PubMet:16370643 Biolisa, Note=The disease is caused by mutations affecting the gene represented in this entry.	beta-alanine biosynthetic process [G0:0019483]; purine nucleobase catabolic process [G0:0006145]; pyrimidine nucleobase catabolic process [G0:0006208]; pyrimidine nucleobide catabolic process [G0:004633]; fyrumidine catabolic process [G0:0006214]; thymine catabolic process [G0:0006220]; uracil catabolic process [G0:0006212]
27 Q9H9T3	ELP3_HUMAN	ELP3	Elongator complex protein 3 (hELP3) (EC 2.3.1.48)	C99-C109-C112	Fe ₄ S ₄	Catalytic	2.3.1.48	Cytoplasm	No	DISEASE: Note=ELP3 genetic variations may be associated with an increased risk for neurodegeneration and motor neuron diseases. (ECO:0000303) PubMed:18996918).	central nervous system development [60:0007417]; histone H3 acetylation [60:0043965]; histone H4 acetylation [60:0043967]; neuron migration [60:0001764]; positive regulation of cell migration [60:003035]; regulation of transcription from RNA polymerase III promoter [60:000537]; transcription elongation from RNA polymerase II promoter [G0:0006368]
28 P18074	ERCC2_HUMAN	ERCC2 XPD XPDC	TFIIH basal transcription factor complex helicase XPD subunit (EC 3.6.4.12) (Basic transcription factor 2.80 k0a subunit) (ITF2 B03) (CXPD) (DNA excision repair protein ENC-2) (DNA repair protein complementing XPD – Defai) (TFIIH basal transcription factor complex 80 k0a subunit) (TFIIH 80 k0a subunit) (TFIIH 980) (Xeroderma pigmentosum group D-complementing protein)	C116-C134-C155-C190	Fe ₄ S ₄	Structural - Regulatory	3.6.4.12	Cytoplasm, Nucleus	No	DISEASE: Xeroderma pigmentosum complementation group D (XP-D) [MIM.228730]: An autosmal recessive pigmentary sin disorder characterized by solar hypercensitivity of the skin, high predisposition for developing cancers on areas exposed to sunghit and, in some cases, neurological abnormatilities. The skin developin marked freeking and other pigmentarion abnormalities. The skin developing cancers of Cockayne syndrome, including cachecitic dwarfam, pigmentary retinopathy, ataxia, decreased neve conduction abnormalities. Cocococcel pipubled: 1170541, ECC 0000269 [PubMed: 1047275, ECC 0000276] [PubMed: 1170541, ECC 0000269 [PubMed: 1047275, ECC 0000276] [PubMed: 7285050, ECC 0000269 [PubMed: 7285732]. DISEASE: Trichotholystrophr J, plotosensitive (TTD1 [PubMed: 728737]. DISEASE: Trichotholystrophr, an autosomal recessive disease characterized to sulfu-deficient Pitte har and multisterem variable anomalities. The spectrum of clineal features write from mild disease with only har involvement to severe disease with calerous-neurologic and profound developmental defects. Ichthropsis, intellectual and developmental disabilities, decreased fertility, abnormal manifectations. There are both photosensitive and non-photosensitive froms of the disorder. TTD1 patients marindle: CO0000269 [PubMed: 515522], Noter The Bioder Control Datemistro specific disorder 315222]. Note: The Bioder Control Datemistro specific disorder 315222]. Note: The Bioder Control Datemistro specific disorder 315223. Ichthropsis, Intellectual and developmental disabilities, decreased fertility, abnormal fuences and the control disorder specific disorder 315223. Ichthropsis, Intellectual and developmental disabilities, decreased fertility, abnormal fuences disorder. TTD1 patients marindle: Contrologic disorder 315223. Ichthropsis, Intellectual and developmental disabilities, decreased fertility, abnormal fuences disorder and developmental disabilities, decreased frontilitis, abnormal fuences disorder and the disorder and the and t	[60:040045]: embryonic organ development [60:00408568]: entrhrocycle maturation [60:0000324)]: estracellular matrix organization [60:0003019]; global genome nucleotide-excision repair [60:000121]; hair cell differentiation [60:0003315]; hair childre maturation [60:006820]; hematopoleti: sten cell differentiation [60:006228]; nu cherotide-excision repair [60:000232]; nucleotide-excision repair [60:000228]; nucleotide-excision repair, DNA duples unwinding [60:0000717]; nucleotide-excision repair, DNA duples unwinding [60:0000717]; nucleotide-excision repair, DNA duples unwinding [60:0000717]; nucleotide-excision repair, DNA for [00:000283]; nucleotide-excision repair, DNA incision [60:000283]; nucleotide-excision repair, DNA incision (60:000283]; nucleotide-excision repair, DNA incision (60:0000848]; nucleotide-excision repair, prencision complex stabilization (60:0008481]; nucleotide-excision repair, pretria [60:0004388]; positive regulation of transcription. DNA template [60:0045944]; positive repairation of transcription. Position protein phosphorylation (60:0008481]; nucleotide-excision repair [60:0004594]; positive repairation of transcription. DNA template [60:0004594]; positive repairation [60:0000848]; transcription-coupled huschotide-excision repair [60:000848]; reascription of mattix cell cycle phase transcription (60:000848]; transcription-to-matike transcription for MNA polymerase I promoter [60:000848]; transcription-to-matike nucleotide-excision repair [60:000848]; transcription-to-matike nucleoti
29 Q16134	ETFD_HUMAN	ETFDH	Electron transfer flavgordelen ubiquione oxidoreductuse, mitochondrial (ETF- QO) (ETF-biblione oxidoreductuse) (ECL 5.5.1) (Electron-transferring- flavoprotein dehydrogenase) (ETF dehydrogenase)	C561-C586-C589-C592	Fe ₄ S ₄	Electron transfer	1.5.5.1	Mitochondrion	Yes	D95545: Subtrie activa Z (GAZ) [MM-31809]. An astoomal recessively inhered disorder of flavy dis, animo add, and choline metaboline. It is characterized by multiple acyl-CoA dehydrogenaec deficiencics resulting in large excertion not only of gittaria: add, batis of lastic, characterized by the state of the state of the locolarier acids. [ECO:000269] PubMed: 12815589. ECO:000269] PubMed: 1527426; ECO:000269] PubMed: 12815589. ECO:000269] PubMed: 1527426; ECO:000269] PubMed: 12815589. ECO:000269] PubMed: 1527426; ECO:0000269] PubMed: 12815789. disease is caused by mutations affecting the gene represented in this entry.	electron transport Chall (GE 0002290) [raty acid beta-wiskation using soyl- CoA dephrogramsa (GE 0003339); reginitory electron transport chain (GE 00022904); response to oxidative stress (GE 0006979)
30 Q9BX63	FANCI_HUMAN	BRIP1 BACH1 FANCJ	Fanconi anemia group. J protein (Protein FAC) (JC 3.6.4.13) (ATP-dependent BNA helicase BBPI) (BRCA-issociated c-terminal helicase Lorenzi (JRRCA-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1)	C283-C298-C310-C350	Fe ₄ S ₄	Structural - Regulatory	3.6.4.13	Nucleus	No	DISEASE: Breast cancer (BC) [MMK-114480]: A common malgrapycy originating from breast epithelius Bisse. Breast neoplasms can be distinguished by their histologic pattern. Invasive ductal carcinoma is by far the most common type. Breast cancer is etiological and genetically heterogenous. Important genetic factors have been indicated by familial occurrence and bilateral involvement. Mutations at more than one locus can be involved in different Imilies or ven in the same case. [ECC.0000266] PubMed: 11301010, ECC.0000226] PubMed: 14983014]. Note-Disease succeptibility is associated with variations affecting the gene represented in this entry; DISEASE: Fanconi anemia complementation group. J (FANCI) [MMK:00054]. A disorder affecting all bomars, and a preligosition to the development of malignamice. At the calitat revel it is associated with hypersensitivity to DNA-damaging agents, (ECC.0000266] PubMed: 1616423, ECC.0000266] PubMed: 1618424, ECC.0000266] PubMed: 1618403, Neter The disease is caused by mutations affecting the gene represented in this entry.	cellular response to angiotensini (GO 1300435); cellular response to hypoxia (GO:007435); cultura response to visioni (GO:007216); chiama assembly (GO:00523); DNA damage checkgoini (GO:00077); DNA reglicationi (GO:000526); DNA damage checkgoini (GO:000077); DNA reglicationi (GO:000526); DNA ynthesis involved in DNA regai (GO:0000731); double- strand break repair (GO:0005302); double-strand break repair involved in meiotir econtinationi (GO:0002825); negative regulation of gene expression (GO:0016237); regulation of signal transduction by p33 class meditori (GO:000537); regulation of signal transduction by p33 class meditori (GO:000537); regulation of oxid/stranscription from RNA polymerase II promoter (GO:000537); regulation of oxid/stranscription from RNA polymerase (GO:0007286); permatogonial cell division (GO:0007284); strand displacement (GO:000732)
31 Q6P4F2	FDX2_HUMAN	FDX2 FDX1L	Ferredoxin-2, mitochondrial (Adrenodoxin-like protein) (Ferredoxin-1-like protein) C105-C111-C114-C151	Fe ₂ S ₂	Substrate - biogenesis		Mitochondrion	No		C21-steroid hormone biosynthetic process [GO:0006700]; small molecule metabolic process [GO:0044281]; sterol metabolic process [GO:0016125]

32 P	80404	GABT_HUMAN	ABAT GABAT	4-aminobutyrate aminotransferase, mitochondrial (EC 2.6.1.19) ((5)-3-amino-2- methylpropionate transaminase) (EC 2.6.1.22) (GABA aminotransferase) (GABA- 71) (Gamma-amino-N-butyrate transaminase) (GABA transaminase) (GABA-T) (L- AIBAT)	C163-C166	Fe ₂ S ₂ per homodimer	Unknown	2.6.1.19; 2.6.1.22	Mitochondrion	No	DISEASE: GABA transaminase deficiency (GABATO) [MIM:613163]: An enzymatic deficiency resulting in psychomotor retardation, hypotonia, hypereflexia, lethargy, refractory seizurs, and EEG abnormalities. [ECO:000209] PubMed:1020778]. Note=The disease is caused by mutations affecting the gene represented in this entry.	aging [GO.0007568]; behavioral response to cocaine [GO.0048148]; cerebellum development [GO.0021549]; copulation [GO.0007520]; exploration behavior [GO.0003640]; gamma-animobutyric add biosynthetic process [GO.000449]; gamma-animobutyric add scatabilic process [GO.0003450]; negative regulation behavior [GO.000752]; negative regulation of biod pressure [GO.0005476]; negative regulation of dopamine secretion [GO.0003602]; negative regulation of gamma-animobutyric add sceretino [GO.0003602]; negative regulation of platelet aggregation [GO.0009331]; neurotransmitter catabolic process [GO.0042135]; positive regulation of aspartate secretion [GO.1049645]; positive regulation of dopamine metabolic process [GO.004596]; positive regulation of the generation [GO.0007151]; positive regulation of insilin secretion [GO.002023]; positive regulation of protectin secretion [GO.1040712]; positive regulation of protectin secretion [GO.1040714]; positive regulation of insilin secretion [GO.002023]; positive regulation of insilin secretion [GO.002023]; positive regulation of insilin secretion [GO.002024]; positive regulation of insilin secretion income [GO.0002166]; response to inno in [GO.001039]; response to income [GO.000254];
33 C	I9N518	GLRX2_HUMAN	GLRX2 GRX2 CGI-133	Glutaredoxin-2, mitochondrial	C77	Fe ₂ S ₂ per homodimer	Substrate - biosinthesis		Mitochondrion	No		aging [GO.0007568]; apoptotic process [GO.0006915]; cell differentiation [GO.003154]; cell redox homeostasis [GO.0045545]; cellular response to supervaide [GO.001745]; DNA protection [GO.002252]; plurathione metabolic process [GO.0006749]; regulation of signal transduction [GO.000996]; regulation of transcription, DNA-reginated [GO.000535]; response to hydrogen peroxide [GO.0012542]; response to organic substance [GO.001033]; response to redox state [GO.001575]; response to temperature stimulus [GO.0009266]
34 C	76003	GLRX3_HUMAN	GLRX3 PICOT TXNL2 HUSSY-22	Glutaredoxin-3 (PKC-interacting cousin of thioredoxin) (PICOT) (PKC-theta- interacting protein) (PKCq-interacting protein) (Thioredoxin-like protein 2)	C159-C261	Fe ₂ S ₂ shared with partner	Substrate - biosinthesis		Cytoplasm, Cell membrane	Yes		[2Fe-25] cluster assembly [GO:0044571]; cell redox homeostasis [GO:004554]; negative regulation of cardiac muscle hypertrophy [GO:000614]; protein maturation by iron-sulfur cluster transfer [GO:0097428]; regulation of the force of heart contraction [GO:0002026]
35 0	865X6	GERXS_HUMAN	GLRX5 C14orf87	Giutaredoxin-related protein 5, mitochondrial (Monothiol glutaredoxin-5)	C67	Fe ₁ S ₂	Substrate - biogenesis		Mitochondrion	No	DISEASE: Anemia, sideroblastic, 3. pyridoxine-refractory (SIDBA3) [MIM-616860]: A form of sideroblastic anemia, a bone marow disorder defined by the presence of pathologic timo deposits in erythrobiast miticohordina. Sideroblastic amenia en characterized by anemia of unying sevenity, hypochromic peripheral erythrocytes, systemic lino avectoria exploration of the characterized by anemia of unying sevenity, hypochromic peripheral erythrocytes, systemic lino avectoria exploration of the characterized by anom- posted micharodria classification of the michary size and the inclusion of the characterized by anom- mosted micharodria classification of the michary size are unit in clinical improvement. SIDBA3 wheritance is autoomal increasive. ECO0000059 [PubMed:1385546, ECO000059 [PubMed:2036082, ECO0000059 [PubMed:2353467]. ECO000059 [PubMed:2036082, ECO000059 [PubMed:2353467]. ECO000059 [PubMed:203608, ECO000059 [PubMed:2353467]. ECO000059 [PubMed:203608]. An autoina affective expression full and micro micro sevent disorder at patients. The increase is less pronounced than in patients with classic non-ketoric layerglycinemia. [CC0000059 [PubMed:233467]. Single (ECO000059 [PubMed:233467]. An autoina in patients, mon-ketoric hyperglycinemia, and defective enzymatic glycine at patients. The increase is less pronounced than in patients with classic non-ketoric hyperglycinemia [CC0000059 [PubMed:2334267]. Numbed:20387, PubMed:2334267]. Numbed:20387, PubMed:2334267]. Numbed:20387, PubMed:2334267]. Numbed:20387, PubMed:2334267]. Numbed:20387, PubMed:2334267]. Num	cell redox homeostasis [GO:0045454]; hemopolesis [GO:0030097]; protein lipoyfation [GO:0009249]; small molecule metabolic process [GO:0044281]
36 A	8MXD5	GRCR1_HUMAN	GRXCR1 DFNB25	Glutaredoxin domain-containing cysteine-rich protein 1	C156	Fe ₂ S ₂ (predicted)	Unknown		Unknown	No	DISEASE: Dearlness, autosomal recessive, 25 (DPNB25) [MIII/613285]: A form of non- syndromic sensorineural dearlness characterized by moderate to averee or profound hearing loss which is progressive in a some initial which built not in others. Speech and the syndromic sensoring and the syndromic sensoring and the dynamic ton is observed in some affected individuals. Sensorineural dearlness results from damage to the neural receptor of the lines are, the neuro pathways to the brain or the area of the brain that receives sound information. (EC00000269 (bubbed: 20137774; EC00000269 (bubbed: 20137778), Note=The disease is caused by mutations affecting the gene represented in this entry.	cell notex homeostasis [G0:0045454]; inner ear receptor cell development [G0:0060119]; inner ear receptor stereodilum organization (G0:0060122); inegrive regulation of plosphates activity (G0:001023); sensory perception of sound [G0:0007666]; vesitbular receptor cell development [G0:0060118]
37 P	22830	HEMH_HUMAN	FECH	Ferrochelatase, mitochondrial (£C 4.99.1.1) (Heme synthase) (Protoheme ferro- lysse)	C196-C403-C406-C411	Fe ₂ S ₂	Regulatory	4.99.1.1	Mitochondrion	Yes	classified as erythropoietic or hepatic, depending on whether the enzyme deficiency occurs in red blood cells or in the liver. Erythropoietic protoporphyria is marked by excessive protoporphyrin in erythrocytes, plasma, liver and feces, and by widely varying	cellular response to desamethisone stimulus (GO:0071549); generation of precursor methodites and energi (GO:000691); here biosynthetic process (GO:0006783); protoporphyrinagen tX methodic process (GO:0046685); response to drag (GO:004743); protoporphyrinagen (GO:0015471); response to drag (GO:004743); prosponse to teland (GO:0015282); response to light stimulus (GO:000476); response to teland (GO:0010288); response to light stimulus (GO:000476); response to teland (GO:0010288); response to light stimulus (GO:000476); response to methylmercury (GO:0051597); response to platinum ion (GO:0070541)
38 P	48200	IREB2_HUMAN	IREB2	Iron-responsive element-binding protein 2 (IRE-BP 2) (Iron regulatory protein 2) (IRP2)	C512-C578-C581	Fe ₄ S ₄	Substrate - sensor		Cytoplasm	No		cellular iron ion homeostasis [GO:0006879]; iron ion transport [GO:0006826]; metabolic process [GO:0008152]
39 C	9BUE6	ISCA1_HUMAN	ISCA1 HBLD2 GK004	In on-sulfur cluster assembly 1 homolog, mitochondrial (HESB-like domain- containing protein 2) (Iron-sulfur assembly protein IscA) (hIscA)	C57-C121-C123	Fe ₂ S ₂ /Fe ₄ S ₄	Substrate - biogenesis		Mitochondrion	No	DISEASE: Multiple mitochondrial dysfunctions syndrome 5 (MIMDS5) (MIM.617613): An autosomal recessive, severe disorder characterized by early onset neurological deterioration, seizures, cerebal an alcevial cerebaline take/strophy, dysmyelination, cortical migrational abnormalities, lactic acidosis and early demise. (EC0.0000269) PubMed: 28356563). Note=The disease is caused by mutations affecting the gene represented in this entry.	iron-sulfur cluster assembly [GO:0016226]; protein maturation by iron-sulfur cluster transfer [GO:0097428]; small molecule metabolic process

0 Q86U28	ISCA2_HUMAN	ISCA2 HBLD1	(ron-suffur cluster assembly 2 homolog, mitochondrial (HESB-like domain- containing protein 1)	C79-C144-C146	Fe ₂ S ₂ /Fe ₄ S ₄	Substrate - biogenesis		Mitochondrion	No	DISEASE: Multiple mitochondrial dysfunctions syndrome 4 (MMDS4) (MMIs63507): A severe dioxedre of systemic energy metabolism, resulting in weakness, respiratory failure, lack of neurologic development, lactic acidosis, hyperglycinemia and early death. (ECO.000260 / PubMed: 2539947). Note-The disease is caused by mutations affecting the gene represented in this entry.	protein maturation by iron-sulfur cluster transfer [GO:0097428]; small
1 Q9H1K1	ISCU_HUMAN	ISCU NIFUN	iron-sulfur cluster assembly enzyme ISCU, mitochondrial (NIfU-like N-terminal domain-containing protein) (NifU-like protein)	C69-C95-H137-C138	Fe ₂ S ₂	Substrate - biogenesis		Mitochondrion	No	DISEASE: Myopathy with exercise intolerance Swedish type (MEIS) [MIM.255125]; Autosomal recessive metabolic disease characterized by Holong severe exercise intolerance, in which minor exercise causes and the severe cause of breath, and cardiac papipations in association with backt addosis. The biochemical phenotype is characterized by a deficiency in microtoxinal inno-alidar proteins and impaired muscle outdrive metabolism. [ECO.000226] (PubMed:13304407), Note-The disease is caused by mutations affecting the gene presented in the entry.	cellular trov ion homeostasis (50.0006879); iron-sulfur cluster assembly (50.0016226); protein maturation by iron-sulfur cluster transfer (50.009428); small molecule metabolic process (50.0044281)
2 043766	LIAS_HUMAN	LIAS LAS HUSSY-01	Lipoyl synthase, mitochondrial (EC 2.8.1.8) (Upoate synthase) (LS) (Up-syn) (Upoic acid synthase)	C106-C111-C117; C137- C141-C144	2 × Fe ₄ S ₄	Electron transfer, Catalytic	2.8.1.8	Mitochondrion	No	DISEASE: Hyperglycinemia, lactic acidosis, and seizures (HGCLAS) [MIM:614462]: An enzymatic defect resulting in an autosomal recessive disorder of mitochondrial metabolism. It is characterized by eariy-onset lactic acidosis, server encephalomyopathy, and a purvate oxidation defect. Affected individuals have neonata-noset epilepsy, poor growth, psychomotor relatration, muscular hypotonia, lactic acidosis, and levated glycine concentration in plasma and urine. (ECO.00026) PubMed:2125580). Note-The disease is caused by mutations affecting the gene represented in this entry.	cellular nitrogen compound metabolic process [GO:0034641]; inflammatory response [GO:000954]; ipaate biosynthetic process [GO:0009107], neural tube closure [GO:000343]; protein lapovlation [GO:0009249]; response lipopolysaccharide [GO:0032496]; response to oxidative stress [GO:0006979
3 Q9NZB8	MOCS1_HUMAN	MOCS1 MIG11	Molybdenum cofactor biosynthesis protein 1 (Cell migration-inducing gene 11 protein) (Molybdenum cofactor synthesis-step 1 protein A-B) (Includes: CIF 3/2, cyclare (EC.4.1922) (Molybdenum cofactor biosynthesis protein A): (Cell pyranopterin monophosphate synthase (EC 4.6.1.17) (Molybdenum cofactor biosynthesis protein C))	C80-C84-C87; C312-C315- C329	2 × Fe ₄ S ₄	Catalytic, Structural	4.1.99.22; 4.6.1.17	Unknown	No	DISEASE: Molybdenum cofactor deficiency, complementation group A (MOCODA) (MM-252150): An autosomal recessive metabolic disorder leading to the peletoropic loss of molybdeneyma estituies. It is clinically characterized by onset in infancy of poor feeding, intractable seltures, severe psychomotor retardation, and death in early childhood in most patients; (CC0000269) PubMed:1735700, EC0:0000269) PubMed:15021469, EC0:0000269) PubMed:3731530, EC0:0000269] PubMed:99213969, Note-The disease is caused by mutations affecting the gener presented in the entry.	molybdopterin cofactor biosynthetic process [60:0032324]; Mo- molybdopterin cofactor biosynthetic process [60:0006777]
	MUTYH_HUMAN	MUTYH MYH	Adenine DNA glycosylase (EC 3.2.2) (MutY homolog) (hMYH)	C287-C294-C297-C303		Structural - Regulatory	3.2.2	Mitochondrion, Nucleus		DISEASE: Familial adenomatous polypois 2 (FAP2) [IMM:608456]: A condition characterized by the development of multiple contextal adenomatous polyps, being neoplasms derived from glandular epithelium. Some affected individuals may develop colorectal carrinoma. (EC:0000269 [PubMed:1183965, EC:0.0000269 [PubMed:13506733, EC:0000269 [PubMed:1557584, EC:0.0000269 [PubMed:1350702, EC:00000269 [PubMed:16557584, EC:0.0000269 [PubMed:1350702, EC:00000269 [PubMed:1357754, EC:0.0000269 [PubMed:1351511, EC:00000269 [PubMed:13657584, EC:0.0000269 [PubMed:1351511, EC:00000269 [PubMed:1369737, EC:0.0000269 [PubMed:1351511, EC:00000269 [PubMed:1369737, EC:0.0000269 [PubMed:1351511, EC:00000269 [PubMed:238077, EC:0.0000269 [PubMed:2380770, EC:00000269 [PubMed:2380770, EC:0.0000269 [PubMed:2380770, EC:00000269 [PubMed:2480770, EC:0.0000269 [PubMed:2380770, EC:00000269 [PubMed:2380770, EC:0.0000269 [PubMed:2380770, EC:00000269 [PubMed:2380770, EC:0.0000269 [PubMed:2380770, EC:00000269 [PubMed:2380770, EC:0.0000269 [PubMed:23807770, EC:0.0000269 [PubMed:23807770, EC:0.0000269 [PubMed:25777722, EC:0.0000269 [PubMed:25777722]	depurination [G0:0045007]; DNA repair [G0:0006281]; mismatch repair [G0:0006298]
5 Q9UHQ1	NARF_HUMAN	NARF	Nuclear prelamin A recognition factor (Iron-only hydrogenase-like protein 2)	C172-C228-C374-C378	$2 \times Fe_4S_4$	Unknown		Nucleus	No		
6 Q9H6Q4	NARFL_HUMAN	NARFL PRN	(10P2) Cytosolic Fe-S cluster assembly factor NARFL (Iron-only hydrogenase-like protein 1) (10P1) (Nuclear prelamin A recognition factor-like protein) (Protein related to Narf)	C24-C71-C74-C77; C190- C246-C395-C399	2 × Fe ₄ S ₄	Substrate - biogenesis		Unknown	No		hematopoletic progenitor cell differentiation [GC:0002244]; iron-sulfur clust assembly [GO:0016226]; oxygen homeostasis [GO:0032364]; regulation of gene expression [GO:0010468]; response to hypoxia [GO:0001666]
7 P28331	NDUS1_HUMAN	NDUFS1	NADH-ublquinone oxidoreductase 75 kDa subunit, mitochondrial (EC 1.6.5.3) (EC 1.6.59.3) (Complex I-75kD) (D-75kD)	C64-C75-C78-C92; H124- C128-C131-C137; C176- C179-C182-C226	2 × Fe ₄ S ₄ , Fe ₂ S ₂	Electron transfer	1.6.5.3; 1.6.99.3	Mitochondrion	Yes	DISEASE: Mitochondrial complex I deficiency (MT-C1D) [MIM-252010]: A disorder of the mitochondrial respiratory chain that causes a wide range of clinical manifestations from lethal neoratal disease to adulto-nost neurodegenerative disorders? Phenotypes include macrocephaly with progressive leukodystrophy, non-specific encephalopathy, cardiomyopathy, myopathy, live disease, Lejko-yadrome, Leber heredlarv optic neuropathy, and some forms of Parkinson disease. (EC:0:0000269) PubMed:113402233. Note=The disease is caused by mutations affecting the gene represented in this entry.	
8 075306	NDUS2_HUMAN	NDUFS2	NADH dehydrogenase (ubiquinone) iron-sulfur protein 2, mitochondrial (EC 1.6.3.3) (EC 1.6.9.3.3) (Complex I-49kD) (CI-49kD) (NADH-ubiquinone oxidoreductase 49 kDa subunit)	C326-C332-C347	Fe ₄ S ₄	Electron transfer	1.6.5.3; 1.6.99.3	Mitochondrion	Yes	DISEASE: Mitochondrial complex (deficiency (MT-C1D) [MIM:252010]: A disorder of the mitochondrial respiratory chain that causes a wide range of clinical manifestations from letah neoratal disease to adul to-next neurodegenerative disorders? Phenotypes include macrocephaly with progressive leukodystrophy, non-specific encephalopathy, cardiomypathy, myopathy, live disease, Lejka yourdone, Leber breedlarv optic neuropathy, and some forms of Parkinson disease. (ECO:000269] PubMed: 11220739]. Note: The disease is caused by mutations affecting the gene represented in this entry.	

49 075	5251	NDUS7_HUMAN	NDUFS7	NADH dehydrogenase (ubiquinone) iron-sulfur protein 7, mitochondrial (EC 1.6.5.3) (EC 1.6.99.3) (Complex i-20K0) (Ci-20K0) (NADH-ubiquinone oxidoreductase 20 kDa subunit) (PSST subunit)	C88-C89-C153-C183	Fe ₄ S ₄	Electron transfer	1.6.5.3; 1.6.99.3	Mitochondrion	No	DISEXSE: Leigh syndrome (LS) [MM:256000]: An early-onset progressive neurodegenerative disorder characterized by the presence of focul, bilateral lesions in one or more areas of the central neurous system including the brainstem, the hadman syndrome and spinal cord. Clinical features depend on which areas of the central nervous system are involved and include subacture onset of psychomotor retardistion, hypotonia, tataki, weakness, vision loss, eye movement abnormalities, seitures, and dysphagi. [EC:0000059] PubMed:013050217]. Note:The disease is caused by mutations affecting the gene represented in this entry. DISEASE: Mitcahondrial complexi deficiency (MT-C1D) [MM:250201]: A disorder of the mitcahondrial respiratory chain that causes a wide range of clinical manifestations from letah neonatal disease to adult-onset, leurodysgenerative disorders. Phenotypes include macrocephaly with progressive leukodystrophy, non-specific encephalopathy, neuropathy, and some forms of Parinson disease. [EC:00000269] PubMed:030333]. Note=The disease is caused by mutations affecting the gene represented in this entry.	mitochondrial electron transport, NADH to ubiquinone [GO:0006120]; mitochondrial respiratory chain complex I assembly [GO:0032981]
50 000	0217	NDUS8_HUMAN	NDUFS8	NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial [EC 1.6.5.3] (EC 1.6.99.3] (Complex i-33&0) (CI-3&0) (NADH-ubiquinone oxidoreductase 23 kDa subunit) (TYKY subunit)	C111-C114-C117-C160; C121-C150-C153-C156	2 × Fe ₄ S ₄	Electron transfer	1.6.5.3; 1.6.99.3	Mitochondrion	No	DISEASE: Leigh syndrome [LS] [MIM.256000]: An early-onset progressive neurodegenerative disorder characterized by the presence of focal, bilateral lesions in one or more areas of the central neurous system including the brainstem, thalamus, basal ganglia, cerebellum and spinal cord. Clinical features depend on which areas of the central nervous system active works and include subacute onset of psychomotor retardration, hypotonia, tarxia, weakness, vision loss, eye movement abnormalities, selturess, and dyphagia. [ECO:000209] PubMed 4937212, Note-The disease is caused by mutations affecting the gene represented in this entry.	mitochondrial electron transport, NADH to ubiquinone (GO.0006120); mitochondrial respiratory chain complex i assembly (GO.0032981); response f oxidative stress (GO.0006979)
51 P49	821	NDUV1_HUMAN	NDUFV1 UQOR1	NADH dehydrogenase (ubiquinone) flavoprotein 1, mitochondrial (EC 1.6.5.3) (EC 1.6.99.3) (Complex I-51kD) (CJ-51kD) (NADH dehydrogenase flavoprotein 1) (NADH-ubiquinone oxidoreductase 51 kDa subunit)	C379-C382-C385-C425	Fe ₄ S ₄	Electron transfer	1.6.5.3; 1.6.99.3	Mitochondrion	Yes	DISEASE: Lieligh syndrome (LS) [MIM:256000]: An early-onset progressive neurodegenerative disorder characterized by the presence of focal, bilateral lesions in neor or more areas of the central neurous system including the brainstem, thalamus, basal gangla, cerebellum and spinal cord. Clinical features depend on which areas of the central nervous system a levibwed and include solucite onset of psychomotor retardistion, hypotonia, tatki, weakness, vision loss, eye movement abnormalities, seitures, and dysphagia. [EC:0000026] PloNbed:01000871]. Note-The disease is caused by mutations affecting the gene represented in this entry. DISEASE: Micchondrial complexi deficiency (MT-CLD) [MM:252001]: A disorder of the mitochondrial respiratory chain that causes a wide range of clinical manifestations from leftal neonatal disease to adult-oness. Leidy hydrochory benchypes include macrocephaly with progressive leukodystrophy, non-specific encephalpapthy, reardismypathy, and some forms of Parkinson disease. [EC:00000269] PubMed:01000124, EC:00000269]PubMed:11349233]. Note-The disease is caused by mutations affecting the gene represented in this entry.	mitochondrial ATP synthesis coupled electron transport [60.0042775]; mitochondrial electron transport, NADH to ubiquinone [60:0066120]; mitochondrial respiratory chain complex I assembly [60:0032981]
52 P19	9404	NDUV2_HUMAN	NDUFV2	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial (EC 1.6.5.3) (EC 1.6.9.3) (NADH-ubiquinone oxidoreductase 24 kDa subunit)	C135-C140-C176-C180	Fe ₂ S ₂	Electron transfer	1.6.5.3; 1.6.99.3	Mitochondrion	Yes		cardiac muscle tissue development [GO:0048738]; mitochondrial electron transport, NADH to ubiquinone [GO:0006120]; mitochondrial respiratory chain compiex i assembly [GO:0032981]; nervous system development [GO:0007399]
53 Q9Y	Y697	NFS1_HUMAN	NFS1 NIFS HUSSY-08	Cysteine desulfurase, mitochondrial (EC 2.8.1.7)	C381	Fe ₂ S ₂	Substrate - biogenesis	2.8.1.7	Mitochondrion	No		[GC:000735] [GF-35] cluster assembly [GO:0044571]; iron incorporation into metallo-sulfu cluster [GO:0018283]; molyhdopterin cofactor blosynthetic process [GO:000777]; protein complex assembly [GO:0006461]; small molecule metabolic process [GO:004281]; sulfur amino acid metabolic process [GO:0000077]
54 Q9U	UMS0	NFU1_HUMAN	NFU1 HIRIP5 CGI-33	NFU1 lion sulfur cluster scaffold homolog, mitochondrial (HIRA-interacting protein 5)	C210-C213	Fe ₄ S ₄	Substrate - biogenesis		Cytoplasm, Mitochondrion	No	DISEASE: Multiple mitochondrial dysfunctions syndrome 1 (MMDSI) [MMEdS9711]. A severe disorder of systemic energy metabolism, resulting in weakness, respiratory failure, lack of neurologic development, lactic actiosis, hypergychemia and early death. Some patients show failure to thive, pulmonary hypertension, hypotonia and irritability, Biochemical features include severe combined deficiency of the 2-axoadid dehydrogenaee, defective lipok acid synthesis and resulton ta totiv) of mitochondrial respiratory china complexes. [EC:0000269] PubMed:2394046, EC:00000269] PubMed:2361432. EC:0000259] PubMed:23961581, Nete-The disease is caused by mutations affecting the gene represented in this entry.	
55 P78	3549	NTH_HUMAN	NTHL1 NTH1 OCTS3	Endonuclease III-like protein 1 (hNTH1) (EC 3.2.2.) (EC 4.2.99.18) (Bifunctional DNA N glycosylase/DNA-(apurinic or apyrimidinic site) lyase) (DNA glycosylase/AP lyase)	C290-C297-C300-C306	Fe ₄ S ₄	Structural - Regulatory	3.2.2; 4.2.99.18	Mitochondrion, Nucleus	No	DISEASE: Familial adenomatous polyposis 3 (FAP3) [MIM:616415]: A form of familial adenomatous polyposis, a condition characterized by the development of multiple colorectal adenomatous polyps, benign neoplasms derived from glandular epithelium. Some affected individuals may develop colorectal carcinoma. (ECO:000269) [PubMed:2393844]. Note-The disease is caused by mutations affecting the gene represented in this entry.	base-excision repair, AP site formation [GO:0006285]; depyrimidination [GO:0045008]; nucleotide-excision repair, DNA incision, 5'-to lesion [GO:0006296]
56 P53	3384	NUBP1_HUMAN	NUBP1 NBP NBP1	Cytosolic Fe-S cluster assembly factor NUBP1 (Nucleotide-binding protein 1) (NBP 1)	C8-C22-C25-C31; C235- C238	Fe ₄ S ₄ , Fe ₄ S ₄ shared with NUBP2	Substrate - biogenesis		Cytoplasm, Nucleus	No	The generative management of the start p	cell growth (GO-0016049); cell projection organization (GO-0030030); cellular iron ion homeostasis (GO:0006879); centrosome localization (GO:0051642); iron-suffur cluter assembly (GO:001526); negative regulation of centrosome duplication (GO:0010826); protein localization to cell cortex (GO:0072697)
57 Q9Y	Y5Y2	NUBP2_HUMAN	NUBP2	Cytosolic Fe-S cluster assembly factor NUBP2 (Nucleotide-binding protein 2) (NBP 2)	C196-C199	Fe ₄ S ₄ shared with NUBP1	Substrate - biogenesis		Cytoplasm, Nucleus	No		cell projection organization [GO:0030030]; iron-sulfur cluster assembly [GO:0016226]
58 Q8T	TB37	NUBPL_HUMAN	NUBPL C14orf127	-' Tron-suffur protein NUBPL (IND1 homolog) (Nucleotide-binding protein-like) (hulnd1)	C244-C247	NUBP1 Fe ₂ S ₂ /Fe ₄ S ₄	Substrate - biogenesis		Mitochondrion	No	DISEASE: Mitochondrial complex I deficiency (MT-CLD) (MIM-252010): A disorder of the mitochondrial respiratory chain that causes a wide range of clinical manifestations from lethal neonatal disease to adult-onset neurodegenerative disorders. Phenotypes include macrocephaly with progressive leukodystrophy, non-specific encephalopathy, cardiomyopathy, myopathy, liver disease, Leigh syndrome, Leber hereditary optic neuropathy, adsome forms of Parkinson disease. [Clos0000269] PubMed:23553477]. Note=The disease is caused by mutations affecting the gene represented in this entry.	mitochondrial respiratory chain complex I assembly [GO:0032981];
59 P49	9643	PRI2_HUMAN	PRIM2 PRIM2A	DNA primase large subunit (EC 2.7.7-) (DNA primase S8 kDa subunit) (pS8)	C287-C367-C384-C424	Fe ₄ S ₄	Structural - Regulatory	2.7.7	Unknown	No		DNA replication, synthesis of RNA primer [G0:0006269]; DNA replication initiation [G0:0006270]; G1/S transition of mitotic cell cycle [G0:0000082]; telomere maintenance via semi-conservative replication [G0:0032201]

0 Q06203	PUR1_HUMAN	PPAT GPAT	Amidophosphoribosyltransferase (ATase) (EC 2.4.2.14) (Giutamine phosphonibosylpyrophosphate amidotransferase) (GPAT)	C280-C426-C503-C506	Fe ₄ S ₄	Unknown	2.4.2.14	Unknown	No		The novo' IMP biosynthetic process [G0.0006189]; animal organ regeneratio [G0.001110]; cellular response to drug [G0.003590]; cellular response to insulin stimula; G0.0032896] (G1.15 transition of mitotic cell cycle [G0.000082]; glutamine catabolic process [G0.000554]; kidney development [G0.001822]; lacticalin [G0.000755]; nucleoside metabolic process [M0.000116]; protein homotetramistion [G0.000759]; nucleoside metabolic process [G0.0009116]; protein homotetramistion [G0.000759]; nucleoside metabolic process [G0.000516]; purine ribonucleoside monophosphate biosynthetic process [G0.0005164]; purine ribonucleoside monophosphate biosynthetic process
61 060673	REV3L_HUMAN	REV3L POLZ REV3	DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3)	C3086-C3089-C3099- C3104	Fe ₄ S ₄	Structural - Regulatory	2.7.7.7	Nucleus	No		DNA-dependent DNA replication [GO:0006261]; error-prone translesion synthesis [GO:0042276]
2 Q8TAC1	RFESD_HUMAN	RFESD	Rieske domain-containing protein	C57-H59-C80-H83	Fe ₂ S ₂ (predicted)	Unknown		Unknown	No		
53 Q9HA92	RSAD1_HUMAN	RSAD1	Radical S-adenosyl methionine domain-containing protein 1, mitochondrial (EC 1.3.99-) (Oxygen-independent coproporphyrinogen-III oxidase-like protein	C49-C53-C56	Fe ₄ S ₄	Catalytic	1.3.99	Mitochondrion	No		porphyrin-containing compound biosynthetic process [GO:0006779]
54 Q8WXG1	RSAD2_HUMAN	RSAD2 CIG5	(FSAD) (FSAD) Radical 3-adenosyl methionine domain-containing protein 2 (Cytomegalovirus- induced gene 5 protein) (Viperin) (Virus inhibitory protein, endoplasmic reticulum associated, interferon-inducible)	C83-C87-C90 -	Fe ₄ S ₄	Unknown		Cytoplasm, Endoplasmic reticulum, Golgi apparatus, Mitochondrion	Yes		CD4-positive, alpha-beta T cell activation (GO.0035710); CD4-positive, alpha- beta T cell differentiation (GO.0043367); defense response to virus (GO.0051607); negative regulation of proteins accretion (GO.0050709); negati regulation of viral genome replication (GO.005071); positive regulation of T-like receptor 7 signaling pathway (GO.003515); positive regulation of Tol-like receptor 9 signaling pathway (GO.0043157); positive regulation of Tol-like receptor 9 signaling pathway (GO.006337); viral process [GO.0016032] type I interferon signaling pathway (GO.006337); viral process [GO.0016032]
Q9NZ71	RTELI_HUMAN	RTELI C20orf41 KIAA1088 NHL	Regulator of telomere elongation helicase 1 (EC 3.6.4.12) (Novel helicase-like)	C145-C163-C172-C207	Fe ₄ S ₄	Structural - Regulatory	3.6.4.12	Nucleus	No	DISEASE: Dyskeratosis congenita, autosomal recessive, 5 (DKCB5) [MIM-615150]: A form of dyskeratosis congenita, arare multisystem disorder caused by defective telomere maintenance. It is characterized by progressive bone marrow failure, and the clinical triad of reticulated skin hyperpigmentation, nali dystrophy, and mucosal leukoptaki. Commo but variable features include permature graving, aplastic anemia low platelets, osteoporosis, pulmoany fibrosis, and liver fibrosis among others. Early mortality is often associated with bone marrow failure, infections, fatal guinnoary complications, or malignancy. DKCB5 is characterized by onset of bone marrow failure and immunodeficiency in arry (https://dx.cbc.org/doc/dbc/2332066). Note-The disyeraal-Hreighubed: 2333065, ECC: 0000269 [PubMed: 2332066]. Note-The disease is caused by mutations affecting the gene represented in this entry. RFLI phenotype consisting of one feature of dyskeratosis congenita, autosomal dominant, dolCA4 [JMMA612332066]. JOESAE: Dyskeratosis congenita, autosomal dominant, dolCA4 [JMMA612332066]. JOESAE: Dyskeratosis congenita, autosomal dominant, dickA4 [JMMA612332066]. JOESAE: Dyskeratosis congenita, autosomal leukoptakia. Common but variable features include premature graving, aplastic anemit leukoptakia. Common furbar, and ther fitosis among others. Early mortality is often associated with bone marrow failure, infections, fatal pulmonary complications, or malingarov, ICCA0000269] PubMed: 2332068]. Note-The disease dy mutations affecting the gene represented in this entry. JDESAE: Pulmonary complications, or malingarov, ICCA00000269] PubMed: 2332068]. Note-The disease is caused by mutations affecting the gene represented in this entry. JDESAE: Pulmonary complications, or malingarov, ICCA00000269] PubMed: 2332068]. Note	of t-circle formation [60:190430]; negative regulation of telomere maintenance in response to DNA damage [Go:190560]; positive regulation (GO:002226); positive regulation of telomere maintenance (GO:00226); positive regulation of telomere anitaneance via telomere lengthening [GO:1904338]; positive regulation of telomere: loog diassembly (GO:1904538]; positive regulation of telomere via telomere emaintenance in consolidation (GO:000728); telomere in anitaneance (GO:000226); pedication for knowski (GO:000723); telomere maintenance in response to DNA damage [GO:0043247]; telomeric loog disassembly (GO:0005657)
6 P21912	SDHB_HUMAN	SDHB SDH SDH1	Succinate dehydrogenase (ubiquinone) iron-sufur subunit, mitochondrial (EC 1.3.5.1) (iron-suffur subunit of complex II) (ip)	093-088-010-013; C186-0189-0192-023; C196-0243-0249	Fe ₂ S ₂ , Fe ₃ S ₄ , Fe ₄ S ₄	Electron transfer	1.3.5.1	Mitochondrion	Yes	DISEASE: Pheochromocytoma (PCC) [MML 173200]: A catecholamine-producing turno of chromaffin tissue of the adrenal medula or ympathetic paragengia. The cardinal symptom, reflecting the increased secretion of epinephrine and norepinephrine, is hypertension, which may be persistent or intermittent. [ECO.0000269] PubMed: 11404820, ECO.0000269] PubMed: 12000816, ECO.0000269] PubMed: 12607820, Poter-Disease userptibility is associated with variations affecting the gene represented in this entry. DISEASE: Paragengliomas 4 (PGL4) [MML*1330]. A neural rest turnor usually derived from the chromerceptor tissue of a paragenglion. Paragengliomas: can develop at various body vites, including the head, next, horax and abdomen. Most commony, they are located in the head an next region, specifically at the caretid bifurcation, they are located in the head an next region, specifically at the caretid bifurcation, they are located in the head an next region, specifically at the caretid bifurcation, they are located in the head an next region, specifically at the caretid bifurcation, they are located in the head an next region, specifically at the caretid bifurcation, they are located in the head an next region, specifically at the caretid bifurcation, they are located in the head an next region, specifically at the caretid bifurcation, they are located in the head an next region, specifically at the caretid bifurcation, the update foramen, the vagal nerve and in the middle eav; (ECO.0000269] PubMed: 13203286]. Note-The disease is caused by mutations affecting the gene represented in this entry; DISEASE paragengliomas. Susceptibility to the turnors such is the context of neurofibromatosis type 1 (NF1). Patients have both gastrointestinal stromal turnors and paragenglionas. Susceptibility to the turnors such set is caused by mutations affecting the gene represented in this entry; DISEASE. Cowden syndrome 2 (2002) [MML6521259]. A form of Cowden syndrome is characterized by hamatromatous with ag-related penetrance. Cowden syndrome is	[GO:002390]; succinate metabolic process [GO:0006105]; tricarboxylic acid cycle [GO:0006099]
57 Q6NUM6	TYW1B_HUMAN	TYW1B RSAFD2	S-adenosyl-L-methionine-dependent tRNA 4-demethylwyosine synthase (EC 4.1.3.44) (Radical S-adenosyl methionine and flavodoxin domain-containing protein 2) (tRNA wybutosine-synthesizing protein 1 homolog B)	C352-C356-C359	Fe ₄ S ₄	Catalytic	4.1.3.44	Unknown	No		oxidation-reduction process [GO:0055114]; tRNA processing [GO:0008033]
58 P47985	UCRI_HUMAN	UQCRFS1	Cycotrome b-c1 complex subunit Bieske, mitochoodnik (CC 110.22) (Complex II subunit 5) (Cychorame b-c1 complex subunit 5) (Riske Ino-sulfur protein) (RISP (Riske protein UGCRFS1) (Ubiquinol-cycotrome c reductase iron-sulfur subunit (Cleaved Into: Cycotrome b-c1 complex subunit 9 (Sub) (Subunit 9) (8 kDa subunit 9) (Complex III subunit 1N (Cycotrome b-c1 complex subunit 11) (Ubiquinol-cytochrome c reductase & kDa protein))	C217-H219-C236-H239	Fe ₂ S ₂	Electron transfer	1.10.2.2	Mitochondrion	Yes		Initochandrial electron transport, ubiquinol to cytochrome c [60:0006122]; response ta athliking [G0:0066717] response to drug [G0:0042493]; response to hormone [G0:0009725]

69 P0C7P4	UCRIL_HUMAN	Putative cytochrome b-c1 complex subunit Rieske-like protein 1 (Ubiquinol- cytochrome c reductase Rieske iron-sulfur subunit pseudogene 1)	C226-H228-C231-C245- H248	Fe ₂ S ₂ (predicted)	Unknown	Unknown	No		
70 P47989	XDH_HUMAN		C43-C48-C51-C73; C113- C116-C148-C150	2 × Fe ₂ S ₂	Electron transfer	Cytoplasm, Extracellular space, Peroxisome		Uric scid is strikingly diminished in serum and urine. XAN1 is due to isolated xanthine dephrogrease actification, Y hattens an metabolica alloquirunol. (ECO.0000269) PubMed:1044591, ECO.0000269) PubMed:11379872, ECO.0000269 PubMed:15451345, ECO.0000269 PubMed:1552821, Note=The disease is caused by mutations affecting the gene represented in this entry.	process [GO:0006919]; lactation [GO:0007595]; negative regulation of endothelial cell differentiation [GO:0045602]; negative regulation of endothelial cell priliferation [GO:0001937]; negative regulation of gene expression [GO:0010629]; negative regulation of protein kinase B signaling