Supplementary information for “Effective chemical potential for non-equilibrium system and its application to molecular beam epitaxy of Bi$_2$Se$_3$”

Na Wang1,2,3, Damien West3, Wenhui Duan1, and S. B. Zhang3,4

1Department of Physics, Tsinghua University, Beijing 100084, China

2Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

3Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180

4Beijing Computational Science Research Center, Beijing 100193, China
General expression for the association rate k_{α}^{+i}

When the association is not diffusion-limited, the following rate equation applies [1],

$$k_{\alpha}^{+i} = 2\pi(D_\alpha + D_i)\frac{k_{\alpha,0}^{+i}}{k_{\alpha,0}^{+i} + k_{\alpha@i}^{-i}}$$

(S1)

where

$$k_{\alpha,0}^{+i} = \nu \exp(-\varphi_{\alpha,0}^{+i}/kT)$$

(S2)

is the on-site association rate between cluster α and cluster i. Here, on-site means the two clusters are nearest-neighbor clusters (denoted as $\alpha@i$), and

$$k_{\alpha@i}^{-i} = \nu \exp(-\varphi_{\alpha@i}^{-i}/kT)$$

(S3)

is the dissociation rate of the above nearest-neighbor cluster pair $\alpha@i$. $k_{\alpha@i}^{-i}$ enters the denominator in Eq. (S1) because it competes with on-site association to form cluster $\alpha + i$. In Eqs. (S2) and (S3), $\varphi_{\alpha,0}^{+i}$ and $\varphi_{\alpha@i}^{-i}$ are the respective activation barriers.
FIG. S1: (a) Calculated association barriers (φ_{α}^{+i}) for the clusters in Fig. 2. (b) Concentrations of
the clusters: (red open squares) both association and diffusion processes are considered; (black
filled squares) only diffusion-limited process is considered. In the calculation, we ignore the
weak interaction between clusters, whereby we approximate $\varphi_{\alpha,0}^{+i} \approx E_{0\alpha} + E_{0i} - E_{0\alpha+i} + \varphi_{\alpha+i}^{-i}$,
where $E_{0\alpha}$ is the total energy of cluster α on the surface relative to the isolated constituent atoms,
and $\varphi_{\alpha+i}^{-i} \approx \varphi_{diff}^{diff}$. The reason that the diffusion-limited-process assumption works for Bi$_2$Se$_3$ is
because the most probable clusters, i.e., atomic Se and BiSe$_2$, happen to have the largest
diffusion barriers in Fig. 3(a).
FIG. S2: Cluster concentration c_α as a function of the maximum cluster size N_{max} used in the calculation, which is defined by the red dashed lines in the inset. In principle, two clusters can associate to form a larger one so the inclusion of larger clusters will affect the concentration of the smaller clusters. If we define $\delta N_\alpha = N_{max} - N_\alpha$, where N_α is the size of cluster α, then the effect of N_{max} on c_α appears to be the largest only when $\delta N_\alpha = 1$, as can be seen in Fig. S2. In the current study, we choose $N_{max} = 4$ but exclude Bi$_3$Se for its relatively high energy. We also include Bi$_2$Se$_3$ in the cluster set for it is the smallest molecular unit to build bulk Bi$_2$Se$_3$. Our use of $N_{max} = 4$ is reasonable, as our results show that the largest cluster relevant to the growth, BiSe$_2$, has $N_{max} = 3$.

FIG. S3: Desorption barrier (φ_{des}^d) for molecular clusters ($\text{Bi}_2\text{Se}_3)_n$, as a function of molecule size n. The general trend is that as n increases, it gets harder to desorb the molecules.
FIG. S4: Calculated (a) cluster concentration c_α and (b) chemical potential μ_α, as a function of the predetermined island density c_{isl}. These results show that the change in μ_α due to c_{isl} is relatively small, only 0.3 eV, which is on par with the numerical accuracy achievable in this kind of calculations.

Reference