Supplementary Information

Growth of graphene with large single crystal domain by Ni foam assistant structure and its high-gain field-effect transistors

Xue Dong Gao, Cui Yu*, Ze Zhao He, Xu Bo Song, QingBin Liu, ChuanG Jie Zhou, Jian Chao Guo, Shu Jun Cai, and Zhi Hong Feng*
National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051, Hebei Province, China.
Corresponding Author: yucui1@163.com; ga917vv@163.com

Fig. S1 (a-1), (a-2) SEM and EDX of Cu foil with Ni foam assistant structure after heat treatment, the O atomic ratio on Cu surface is 4.62%; (b-1), (b-2) SEM and EDX of Cu foil without Ni foam assistant after heat treatment, the O atomic ratio on Cu surface is 1.28%.
Fig. S2 Raman shifts of graphene samples with different growth rates.

Fig. S3 (a) Fabrication schedule, and (b) OM image of graphene FET.