Supplementary Information

Negative Poisson’s Ratio in 2D Life-boat Structured Crystals

Ruhao Fang1,3, Xiangyuan Cui*2,4, Catherine Stampfl1, Simon P. Ringer2,4, Rongkun Zheng1,*1,3,4

1 School of Physics, The University of Sydney, New South Wales 2006, Australia
2 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006, Australia
3 Nano Institute, The University of Sydney, New South Wales 2006, Australia
4 Australian Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales 2006, Australia

The calculation about the rotation and stretch of the bonds

The bond rotation and stretch happen simultaneously in a strain-engineered process. To estimate the energy change dominated by only rotation or stretch effect, a rigid approach can be used by fixing the other variables but relaxing those expressing the rotation or stretch. To compare the $\frac{\partial U}{\partial r}$ and $\frac{\partial U}{\partial \theta}$, the limit definition of partial derivative can be used:

$$\frac{\partial U}{\partial r} = \lim_{\Delta r \to 0} \frac{\Delta U}{\Delta r}(\theta, \phi)$$

$$\frac{1 \partial U}{r \partial \theta} = \frac{1}{\lim_{r \Delta \theta \to 0} \Delta \theta}(r, \phi)$$

The ratio of $\frac{\partial U}{\partial r}$ in δ-phosphorene, δ-arsenic and δ-graphene under strain in the armchair direction are approximately 5:1, 2.2:1, and 1.2:1, respectively.

Email: carl.cui@sydney.edu.au

Email: rongkun.zheng@sydney.edu.au