Electronic Supplementary Information

Copper (I) sulfide: A two-dimensional semiconductor with superior oxidation resistance and high carrier mobility

Yu Guo,^{ab} Qisheng Wu,^{bc} Yunhai Li,^c Ning Lu,^d Keke Mao,^{be} Yizhen Bai,^a Jijun Zhao,^{*a} Jinlan Wang^{*cf} and Xiao Cheng Zeng ^{*bg}

^aKey Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, Liaoning 116024, China

^bDepartment of Chemistry, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, United States

^cSchool of Physics, Southeast University, Nanjing, Jiangsu 211189, China

^dAnhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China

^eSchool of Energy and Environment Science, Anhui University of Technology, Maanshan, Anhui 243032, China

^fSynergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha, Hunan 410081, China

^gDepartment of Chemical & Biomolecular Engineering and Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, United States

^{*}Corresponding authors: zhaojj@dlut.edu.cn (J. Zhao); jlwang@seu.edu.cn (J. Wang); xzeng1@unl.edu (X. C. Zeng)

S1. Geometric structures, dynamical and thermal stability of selected Cu2S monolayers

Fig. S1. (a) Four representative low-energy structures of freestanding Cu₂S monolayer predicted by using the CALYPSO code. The unit cells are denoted by dashed lines. Cu and S atoms are shown in pink and yellow, respectively. (b) Corresponding phonon dispersions of the four polymorph structures. High-symmetry points of the first Brillouin zone are: Γ (0, 0, 0), X (0.5, 0, 0), Y (0, 0.5, 0) and Q (0.5, 0.5, 0). Among four structures, only Cu₂S-0 (δ -Cu₂S) and Cu₂S-2 are dynamically stable.

Table S1. Formation energies (ΔH) of four Cu₂S monolayer structures shown in Fig. S1.

System	Cu_2S-0 (δ - Cu_2S)	Cu ₂ S-1	Cu ₂ S-2	Cu ₂ S-3
ΔH (eV/atom)	-0.21	-0.13	0.05	0.07

Fig. S2. Snapshots structures of the δ -Cu₂S (a) and Cu₂S-2 monolayers (b) after 10 ps Born-Oppenheimer molecular dynamic simulations, with the temperature being controlled at 300 K. Cu and S atoms are shown in pink and yellow, respectively.

S2. Geometric and electronic structures of β-Cu₂S bilayer

Fig. S3. (a) Top and side views of the experimentally fabricated β -Cu₂S bilayer (see *Adv. Mater.* **2016**, 28, 8271–8276). (b) Band structure of β -Cu₂S bilayer with a direct band gap (E_g) at Γ point, computed based on PBE (left panel) and HSE06 level (right panel), respectively. The Fermi level is set to zero.

S3. Snapshots of δ -Cu₂S monolayer taken at the end of each Born-Oppenheimer molecular dynamics (BOMD) simulation

Fig. S4. Structure snapshots of δ -Cu₂S monolayer from BOMD simulations with temperature being controlled at (a) 300, (b) 500, (c) 800, and (d) 900 K, respectively. Each simulation lasts for 10 ps.

S4. Several adsorption sites for O_2 on δ -Cu₂S

Fig. S5. Top and side views of local geometries for several other adsorption sites for O_2 . The number at the bottom indicate the binding energy of O_2 adsorption on δ -Cu₂S. Since O_2 chemisorption on δ -Cu₂S exhibits only one configuration (see Fig. 3), the structures of O_2 physisorbed on δ -Cu₂S are shown here.

S5. Chemical stability of δ -Cu₂S monolayer considering experimental O₂ bonding energy

Table S2. A comparison of energies for initial (E^i) , transition (E^i) and final (E^f) states, activation energy (E^a) , and heat of reaction (E^H) with either the experimental or DFT calculated O₂ bonding energy as the reference. The unit of E^i , E^t , E^f , E^a and E^H is eV.

	E^i	E^t	Eſ	E ^a	E^H
Exp.	-1.74	0.24	-1.82	1.98	0.08
DFT	-0.09	1.89	-0.17	1.98	0.08

S6. BOMD simulations of O₂ collision with δ -Cu₂S monolayer at 300 K

Fig. S6. Snapshots of BOMD simulations of O_2 oxidation at 300 K at 1 - 5 ps. It can be seen that O_2 molecules are typically bounced back to the vacuum after collision with the δ -Cu₂S monolayer. Hence, it seems that δ -Cu₂S monolayer exhibits superior oxidation resistance.

S7. Strain effect on the band structure of δ -Cu₂S monolayer

Fig. S7. Band structures of δ -Cu₂S monolayer under various lateral strain from -3% to 3%, computed based on HSE06 functional. Fermi levels are set to zero. E_g is the band gap denoted by the solid arrow.

Fig. S8. Strain effect on the band gap of δ -Cu₂S monolayer calculated based on the HSE06 functional.