Supporting Information

3D Quantum Theranosomes: A New Direction for Label-free Theranostics

Authors: Sivaprasad Chinnakkannu Vijayakumar a, b, c, Krishnan Venkatakrishnan a, b, c, d, *, Bo Tan c, e

a Ultrasound laser manufacturing research facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria street, Toronto, Ontario, M5B 2K3, Canada

b Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Ryerson University and St. Michael’s Hospital, Toronto, Ontario M5B 1W8, Canada

c Nano biointerface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada, M5B 2K3

d Affiliate Scientist, Keenan Research Center, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada

e Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada

*Corresponding Author: venkat@ryerson.ca 416-979-5000 Ext: 4984
Figure S1: White Light Emission at Primary and Secondary Theranosomes along with a representative
broadband emission
Figure S2: A) Fluorescence Intensity of NIH3T3, HeLa and MDAMB-231 cells upon native controls. All the images are set to a standard scale of 10 µm. B) Cell viability of theranosomes is established using model cancerous (MDAMB-231) and non-cancerous (NIH3T3) cells.
Figure S3: Stained and unstained control for ROS and Apoptosis assessment
Figure S4: SEM and Fluorescence images of NIH3T3, HeLa and MDAMB-231 cells upon native controls.

All the SEM images are set to a standard scale of 10 µm.