Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## **Supporting Information**

## Facile Synthesis of Oxidized Activated Carbon for High-Selectivity and Low-Enthalpy CO<sub>2</sub> Capture from Flue Gas

Ziyin Li,<sup>a</sup> Xiuling Ma,<sup>a</sup> Shunshun Xiong,<sup>c</sup> Yingxiang Ye,<sup>a</sup> Zizhu Yao,<sup>a</sup> Quanjie Lin,<sup>a</sup> Zhangjing Zhang,<sup>\*,a,b</sup> and Shengchang Xiang<sup>\*,a,b</sup>

<sup>[a]</sup> College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, PR China
<sup>[b]</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
<sup>[c]</sup> Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China

## Contents

| Scheme S1   Illustration of a lab-scale fix-bed reactor                                  | S3        |
|------------------------------------------------------------------------------------------|-----------|
| Figure S1   PXRD patterns of AC, ACO-1, ACO-2, and ACO-3                                 | S4        |
| Figure S2   SEM images of AC                                                             | S4        |
| Figure S3   SEM images of ACO-1                                                          |           |
| Figure S4   SEM images of ACO-3                                                          |           |
| Figure S5   Pore-size distribution of AC, ACO-1, ACO-2, and ACO-3                        | S6        |
| <b>Figure S6</b>   The virial graphs for adsorption of $CO_2$ on AC                      | S6        |
| <b>Figure S7</b>   The virial graphs for adsorption of $CO_2$ on ACO-1                   | S7        |
| Figure S8   The virial graphs for adsorption of $CO_2$ on ACO-2                          | S7        |
| <b>Figure S9</b>   The virial graphs for adsorption of CO <sub>2</sub> on ACO-3          |           |
| Figure S10   Comparison of the $CO_2$ adsorption enthalpy in AC and ACO-n                | S8        |
| Figure S11   Single-site Langmuir-Freundlich equations fit for CO <sub>2</sub> on AC     | S8        |
| Figure S12   Single-site Langmuir-Freundlich equations fit for CO <sub>2</sub> on ACO-1  |           |
| Figure S13   Single-site Langmuir-Freundlich equations fit for CO <sub>2</sub> on ACO-2  | S9        |
| Figure S14   Single-site Langmuir-Freundlich equations fit CO <sub>2</sub> on ACO-3      | S9        |
| Figure S15   The comparison of loaded CO <sub>2</sub> density on ACO-2                   | S10       |
| Table S1   Porous structure parameters of the AC and ACO-n samples                       | S11       |
| Table S2   The comparison of $CO_2$ adsorption performances on ACO-2 with representative | ve porous |
| carbon materials                                                                         | S12       |
| Supplementary References                                                                 | S13       |



Scheme S1 Illustration of a lab-scale fix-bed reactor.



Fig. S1 PXRD patterns of AC, ACO-1, ACO-2, and ACO-3.



Fig. S2 SEM images of AC with 500 fold magnification.



Fig. S3 SEM images of ACO-1 with 500 fold magnification.



Fig. S4 SEM images of ACO-3 with 500 fold magnification.



**Fig. S5** Pore-size distribution of AC, ACO-1, ACO-2, and ACO-3 calculated by the non-local density functional theory (NLDFT).



Fig. S6 The virial graphs for adsorption of  $CO_2$  on AC at 296 K (a) and 273 K (b).



Fig. S7 The virial graphs for adsorption of  $CO_2$  on ACO-1 at 296 K (a) and 273 K (b).



Fig. S8 The virial graphs for adsorption of  $CO_2$  on ACO-2 at 296 K (a) and 273 K (b).



Fig. S9 The virial graphs for adsorption of  $CO_2$  on ACO-3 at 296 K (a) and 273 K (b).



**Fig. S10** Comparison of the enthalpies for gas adsorption of  $CO_2$  on AC (gray), ACO-1 (blue), ACO-2 (red), and ACO-3 (olive green) from two methods: virial equation (solid) and linear extrapolation (open).



**Fig. S11** The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of  $CO_2$  (a),  $N_2$  (b) on AC at 296 K.



**Fig. S12** The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of  $CO_2$  (a),  $N_2$  (b) on ACO-1 at 296 K.



**Fig. S13** The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of  $CO_2$  (a),  $N_2$  (b) on ACO-2 at 296 K.



**Fig. S14** The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of  $CO_2$  (a),  $N_2$  (b) on ACO-3 at 296 K.



Fig. S15 The comparison of loaded  $CO_2$  density on ACO-2 with representative porous carbon materials. Green (blue) bars represent representative porous carbons that modification with different method such as N doping,  $K^+$  ions doping and carbonization, while red bars express the porous carbons were modification by O doping which are showing in Table S2.

| Sample | $\frac{a}{S_{BET}}$ (m <sup>2</sup> /g) | $\frac{b}{S_{Lang}}$ (m <sup>2</sup> /g) | $V_p^{c}$ (cm <sup>3</sup> /g) |
|--------|-----------------------------------------|------------------------------------------|--------------------------------|
| AC     | 948.63                                  | 1259.73                                  | 0.28                           |
| ACO-1  | 805.14                                  | 920.66                                   | 0.24                           |
| ACO-2  | 832.05                                  | 981.51                                   | 0.25                           |
| ACO-3  | 657.21                                  | 811.02                                   | 0.23                           |

Table S1 Porous structure parameters of the AC and ACO-n samples.

<sup>*a*</sup>The specific surface area was determined by the BET equation  $(p/p_0 = 0.05 - 0.3)$ .

<sup>b</sup>The specific surface area was determined by the Langmuir quation  $(p/p_0 = 0.05 - 0.98)$ .

<sup>*c*</sup>The micropore volume were estimated by Dubinin-Radushkevich (DR) method (eq. S1) in relative pressure range from  $10^{-4}$  to  $10^{-2}$  based on the adsorption isotherms of CO<sub>2</sub> at 273 K.<sup>1</sup>

$$V/V_0 = exp\left(-1/(E_0\beta)^2 \left(RTln(p/p_0)\right)^2\right)....(eq. S1)$$

where V is the volume adsorbed at a pressure p,  $V_0$  is the micropore volume,  $E_0$  is the characteristic energy dependent on the pore structure, and  $\beta$  is the affinity coefficient which is characteristic of the adsorptive. The term  $(RTln(p/p_0))^2$  is usually named  $A^2$ .

| Materials             | Modification<br>method         | CO <sub>2</sub> uptake<br>296 K, 1 bar<br>(mmol/g) | $\begin{array}{c} \text{BET} \\ (\text{m}^2 \text{ g}^{-1}) \end{array}$ | Q <sub>st</sub><br>(kJ/mol) | IAST      | $V_p$<br>(cm <sup>3</sup> /g) | $\rho^{a}$ (g/cm <sup>3</sup> ) | Refs             |
|-----------------------|--------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|-----------|-------------------------------|---------------------------------|------------------|
| AC-KOH-N              | KOH, N doping                  | 5.05                                               | 2511                                                                     | 33.6                        | 30.75     | 1.16                          | 0.19                            | 2                |
| NC-650-3              | KOH, N doping                  | 4.80                                               | 1535                                                                     | 33.0                        | $19^{b}$  | 0.56                          | 0.38                            | 3                |
| PFS-800               | КОН                            | 4.62                                               | 1272                                                                     | 40.0                        | -         | 0.38                          | 0.53                            | 4                |
| PN-650-2              | KOH, N doping                  | 4.57                                               | 1445                                                                     | 37.0                        | $22^b$    | 0.52                          | 0.39                            | 5                |
| PUF-400-KOH-<br>1-700 | КОН                            | 4.33                                               | 1516.3                                                                   | 61.0                        | -         | 0.57                          | 0.33                            | 6                |
| NDPC-2-600            | N doping                       | 4.30                                               | 1211                                                                     | 74.2                        | 15.2      | 0.55                          | 0.34                            | 7                |
| KNC-A-K               | KOH, N doping                  | 4.04                                               | 614                                                                      | 59.3                        | $48^b$    | -                             | -                               | 8                |
| NPC-2                 | KOH, N doping                  | 4.02                                               | 1255.9                                                                   | 33.5                        | 32.4      | 0.52                          | 0.34                            | 9                |
| AC-2-635              | K <sub>2</sub> CO <sub>3</sub> | 3.86                                               | 1381                                                                     | 30.4                        | 21        | 0.56                          | 0.30                            | 10               |
| mJUC160-900           | N doping                       | 3.50                                               | 940                                                                      | 23.1                        | 29        | 0.34                          | 0.45                            | 11               |
| OAC-1                 | O doping                       | 3.46                                               | 925                                                                      | 23.5                        | 26.5      | 0.45                          | 0.34                            | 12               |
| KBM-700               | KOH, N doping                  | 3.29                                               | 1129                                                                     | 44.0                        | 99.1      | 0.40                          | 0.36                            | 13               |
| NPC-650               | KOH, N doping                  | 3.10                                               | 1561                                                                     | 43.0                        | -         | 0.65                          | 0.21                            | 14               |
| ACO-2                 | O doping                       | 3.01                                               | 832.05                                                                   | 23.1                        | 48.5      | 0.25                          | 0.53                            | This<br>wor<br>k |
| AAC-1                 | Carbonization                  | 3.00                                               | 392                                                                      | 28.0                        | 45        | 0.22                          | 0.60                            | 15               |
| MOFC-800              | N doping                       | 2.96                                               | 1086.9                                                                   | 28.1                        | 29        | -                             | -                               | 16               |
| HCM-DAH-1             | N doping                       | 2.60                                               | 670                                                                      | 35.9                        | 28        | 0.20                          | 0.57                            | 17               |
| MOP-7C                | KOH,<br>carbonization          | 2.23                                               | 1508                                                                     | 34.7                        | 21        | 0.56                          | 0.18                            | 18               |
| IBN9-NC1              | N doping                       | 1.81                                               | 925                                                                      | 44.1                        | 42        | 0.16                          | 0.50                            | 19               |
| MCN                   | N doping                       | 1.46                                               | 156                                                                      | 32.2                        | $158^{b}$ | -                             | -                               | 20               |

**Table S2** The comparison of  $CO_2$  adsorption performances on ACO-2 with representative porous carbon materials.

The porous carbons materials with orange and green background are modified by oxygen-doping. <sup>*a*</sup> Calculated the density of loaded  $CO_2$  by the equation

$$\rho = \frac{N_{(CO_2)} \times 44}{V_p \times 22.4 \times 1000} \tag{8}$$

 $\rho$  is the density of loaded CO<sub>2</sub> (g cm<sup>-3</sup>), and  $N_{(CO2)}$  is CO<sub>2</sub> sorption capacity at 296 K and 1 bar (cm<sup>3</sup> g<sup>-1</sup>).

<sup>b</sup> The selectivity predicted by IAST for the gas mixtures (CO<sub>2</sub>:N<sub>2</sub> = 0.10:0.90) at 296 K.

## REFERENCES

- 1 (a) D. C. Amorós, J. A. Monge and A. L. Solano, *Langmuir*, 1996, *12*, 2820–2824; (b) D. C. Amorós, J. A. Monge, M. A. C. Lillo and A. L. Solano, *Langmuir*, 1998, *14*, 4589–4596.
- 2 C. M. Zhang, W. Song, Q. L. Ma, L. J. Xie, X. C. Zhang and H. Guo, *Energy & Fuels*, 2016, *30*, 4181–4190.
- 3 J. Chen, J. Yang, G. S. Hu, X. Hu, Z. M. Li, S. W. Shen, M. Radosz and M. H. Fan, *ACS Sustainable Chem. Eng.*, 2016, *4*, 1439–1445.
- 4 P. Li, C. Xing, S. J. Qu, B. Li and W. Z. Shen, *ACS Sustainable Chem. Eng.*, 2015, *3*, 1434–1442.
- 5 M. Yang, L. Guo, G. Hu, X. Hu, J. Chen, S. Shen, W. Dai and M. Fan, *Ind. Eng. Chem. Res.*, 2016, 55, 757–765.
- 6 C. Ge, J. Song, Z. F. Qin, J. G. Wang and W. B. Fan ACS Appl. Mater. Interfaces, 2016, 8, 18849–18859.
- 7 N. Fu, H. M. Wei, H. L. Lin, L. Li, C. H. Ji, N. B. Yu, H. J. Chen and G. Y.Xiao, ACS Appl. Mater. Interfaces, 2017, 9, 9955–9963.
- 8 Y.F. Zhao, X. Liu, K. X. Yao, L. Zhao and Y. Han, Chem. Mater., 2012, 24, 4725-4734.
- 9 L. Wan, J. L. Wang, C. Feng, Y. H. Suna and K. X. Li, *Nanoscale*, 2015, 7, 6534–6544.
- 10 X. Q. Fan, L. X. Zhang, G. B. Zhang, Z. Shu and J. L. Shi, *Carbon*, 2013, *61*, 423–430.
- 11 Y. Pan, M. Xue, M. Chen, Q. Fang, L. Zhu, V. Valtcheva and S. L. Qiu, *Inorg. Chem. Front.*, 2016, *3*, 1112–1119.
- 12 J. Wang, R. Krishna, J. F, Yang and S. G. Deng, *Environ. Sci. Technol.*, 2015, 49, 9364–9373.
- 13 Y. Pan, Y. X. Zhao, S. J. Mu, Y. Wang, C. M. Jiang, Q. Z. Liu, Q. R. Fang, M. Xue and S. L. Qiu, J. Mater. Chem. A, 2017, 5, 9544–9552.
- 14 J. C. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liua and S. Kaskel, J. Mater. Chem. A, 2013, 1, 10951–10961.
- 15 J. Wang, J. F. Yang, R. Krishna, T. Yang and S. Deng, J. Mater. Chem. A, 2016, 4, 19095–19106.
- 16 L. J. Li, Y. Wang, X. Gu, Q. P. Yang and X. B. Zhao, *Chem. Asian J.*, 2016, 11, 1913–1920.
- 17 G. P.; Hao, W. C. Li, D. Qian, G. H. Wang, W. P. Zhang, T. Zhang, A. Q. Wang, F. Schüth, H. J. Bongard and A. H. Lu, *J. Am. Chem. Soc.*, 2011, *133*, 11378–11388.
- 18 S. Gu, J. Q. He, Y. L. Zhu, Z. Q. Wang, D. Y. Chen, G. P. Yu, C. Y. Pan, J. G. Guan, K. Tao, ACS Appl. Mater. Interfaces, 2016, 8, 18383–18392.
- 19 Y.F. Zhao, L. Zhao, K. X. Yao, Y. Yang, Q. Zhang, Y. Han, J. Mater. Chem., 2012, 22, 19726– 19731.
- 20 D. Li, Y. Chen, M. Zheng, H. Zhao, Y. Zhao, Z. Sun, ACS Sustainable Chem. Eng., 2016, 4, 298–304.