Supplementary Material

Synthesis of petal-like δ-MnO₂ and its catalytic ozonation performance

Kai Luo a, b, Shi-Xi Zhao a, *, Yi-Feng Wang a, b, Shu-Jin Zhao a, c, Xi-Hui Zhang a

a Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China

b School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China

c School of Materials Science and Engineering, Jiamusi University, Jiamusi, 154007, China

* Corresponding author.

E-mail address: zhaosx@sz.tsinghua.edu.cn (S.-X. Zhao).

Fig. S1 The quality of the preparation of samples: (a) δ-MnO₂-C0.1-12, (b) δ-MnO₂-C0.1-18, (c) δ-MnO₂-C0.1-24.
Fig. S2 The higher magnification image of δ-MnO$_2$-C0.1-24: (a) SEM, (b) TEM.

Fig. S3 Ozonation of BPA and IBU without catalyst. Reaction conditions: $[\text{BPA}]_0 = 10$ ppm, $[\text{IBU}]_0 = 10$ ppm, ozone concentration: 4 mg/L, ozone flow rate: 0.2 L/min.

Fig. S4 (a) XRD patterns and (b) SEM image of the commercial MnO$_2$.