Supporting Information

Novel water soluble pillar[5]arene and phenazine derivatives self-assembled pseudorotaxane sensor for selective detection of Hg$^{2+}$ and Ag$^{+}$ with high selectivity and sensitivity

You-Ming Zhang*, Xiao-Peng Chen, Guo-Yan Liang, Kai-Peng Zhong, Qi Lin, Hong Yao and Tai-Bao Wei*

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070. P. R. China

* Corresponding author. : Tel.: +86-09317973120;
E-mail address: zhangnwnu@126.com; weitaibao@126.com.
1. Experimental

1.1 Materials and instruments

All reagents were purchased from commercial supplies and used without further purification. Solvents and twice-distilled water were purified by standard methods. Fresh double distilled water was used throughout the experiment. Solutions of metal ions were prepared from the perchlorate salts of Fe$^{3+}$, Hg$^{2+}$, Ag$^+$, Ca$^{2+}$, Cu$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, Zn$^{2+}$, Cr$^{3+}$ and Mg$^{2+}$ (4×10^{-4} M). 1H NMR spectra were recorded on a Mercury−600 BB spectrometer at 600 MHz and 13C NMR spectra were recorded on a Mercury−600 BB spectrometer at 150 MHz. Chemical shifts are reported in ppm downfield from tetramethylsililane (TMS, δ scale with solvent resonances as internal standards). Low-resolution mass spectra were recorded on a Bruker Esquire 6000 MS instrument. The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). Ultraviolet-visible (UV-vis) spectra were recorded on a Shimadzu UV-2550 spectrometer. Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer.

1.2 General procedure for fluorescence experiments

Fluorescence spectroscopy was carried out keeping the host concentration constant in water solution on a Shimadzu RF-5301PC spectrofluorophotometer.

1.3 General procedure for 1H NMR titrations

For 1H NMR titrations, three stock solutions were prepared: one of them contained the host only in D$_2$O, the second one contained an appropriate concentration of guest in DMSO-d_6. The third one contained an appropriate concentration of host and guest in D$_2$O. Aliquots of the two solutions were mixed directly in NMR tubes.

1.4 Synthesis and characterization of WP5

1.4.1 Synthesis of compound P5

A solution of compound 1 (3.80 g, 10.00 mmol) in 1, 2-dichloroethane (200 mL), paraformaldehyde (0.68 g, 20.00 mmol) was added under nitrogen atmosphere. Then boron trifluoride diethyl etherate (BF$_3$·O(C$_2$H$_5$)$_2$, 1.42 g, 10.00 mmol) was added to
the solution and the mixture was stirred at room temperature for 4 h. A green solution was obtained. After the solvent was removed, the obtained solid was purified by column chromatography on silica gel with petroleummethane/dichloromethane (1:1 v/v) as the eluent to get a white powder compound P5 (1.57 g, 40%). m. p. 124 - 126 °C.

1H NMR (600 MHz, CDCl$_3$, Fig. S4) δ: 6.86 (s, 10H), 3.96 (s, 20H), 3.76 (d, $J = 8.0$ Hz, 10H), 3.50 (s, 10H), 3.29 (s, 10H), 2.12 (s, 20H), 1.99 (s, 20H). 13C NMR (150 MHz, CDCl$_3$, Fig. S5) δ: 149.55, 128.15, 67.33, 33.83, 32.09, 30.12 and 28.57. MS: ESI (Fig. S6) m/z for P5 C$_{75}$H$_{104}$K$_2$Br$_{10}$O$_{10}$Na$_6$, found: 2180.89, calcd : 2180.82.

1.5 Synthesis of WP5

The compound P5 (1.00 g, 0.51 mmol) and trimethylamine (33 % in ethanol, 6.89 mL, 25.5 mmol) were added to ethanol (50 mL). The solution was refluxed over night. Then the solvent was removed by evaporation, deionized water (20 mL) was added. After filtration, a clear solution was obtained. Then the water was removed by evaporation to obtain WAP as a white solid (1.28 g, 95%). m. p. 218 - 220 °C. 1H NMR (600 MHz, D$_2$O, Fig. S7) δ 6.78 (s, 11H), 3.82 (d, $J = 38.2$ Hz, 31H), 3.25 (s, 21H), 2.97 (s, 90H), 1.78 (s, 41H). The 13C NMR spectrum of WAP is shown in Fig. S8. 13C NMR (150 MHz, D$_2$O) δ: 150.12, 129.22, 116.81, 68.46, 65.87, 52.87, 25.78 and 19.46. HRESI-MS (Fig. S9) m/z for WAP [M - 3Br + 9Na + 2NH$_4$]$^{3+}$ C$_{105}$H$_{198}$Br$_7$N$_{12}$Na$_9$O$_{10}$, found: 848.9418, calcd: 848.9554.
1.6 Synthesis of G

2, 3-Diamino-phenazine ([S1]) (F) (0.42 g, 2.00 mmol), 1-octanal (0.31 g, 2.40 mmol) and catalytic amount of acetic acid (AcOH) were combined in hot absolute DMF (5 mL) (Scheme S2). The solution was stirred under reflux conditions for 8 h, and then the reaction system was poured into 50 mL H₂O and the yellow floccules was filtrated, collected the solid crude product and purified by column chromatography with ethyl acetate / petroleum ether = 20 : 1 (v/v) as eluent, finally got yellow solid 0.47 g, yield: 73.8 % and m. p : 143 - 145°C. ¹H NMR (400 MHz, CDCl₃, Fig. S10) δ 9.63 (s, 1H), 8.55 (s, 1H), 8.21 (s, 4H), 7.77 (m, J = 6.7, 3.4 Hz, 3H), 3.01 (t, J = 7.7 Hz, 2H), 1.94 (m, J = 15.2, 7.5 Hz, 2H), 1.49 – 1.41 (m, 3H), 1.32 (d, J = 14.8 Hz, 4H), 1.37 – 1.15 (m, 2H).

\[
2 \overset{FeCl₃, HCl}{\underset{r.t. \ H₂O}{\longrightarrow}} \text{product} + \text{product}
\]
Scheme S2. Synthesis of G.

2. ESI-MS spectrum of G-WAP

Fig. S1 ESI-MS spectrum of WAP and G, indication a 1:1 stoichiometry.
3. Determination of detection limit of Ag$^+$.

![Graph with linear equation and calculations]

Fig. S2 The photograph of the linear range

Linear Equation: $Y = -206.57843 \times X + 671.15235$,
$R^2 = 0.99892$
$S = 2.061 \times 10^8$
$\delta = \sqrt{\frac{\sum (F_0 - F_i)^2}{N-1}} = 0.83$

$\text{LOD} = K \times \delta / S$, $K=3$
$\text{LOD} = 1.20 \times 10^{-8} \text{M}$
4. ESI-MS spectrum of \([G + 2\text{AgClO}_4 + \text{H}]^+\).

Fig. S3 Electrospray ionization mass spectrum of \([G + 2\text{AgClO}_4 + \text{H}]^+\).
Fig. S4 1H NMR (600 MHz, 298 K) spectra of product P5 in CDCl$_3$.

Fig. S5 13C NMR (150 MHz, 298K) spectra of product P5 in CDCl$_3$.
Fig. S6 Electrospray ionization mass spectrum of compound P5.

Fig. S7 1H NMR (600 MHz, 298K) spectra of product WAP in D$_2$O.
Fig. S8 13C NMR (150MHz, 298K) spectra of product WAP in D$_2$O.

Fig. S9 Electrospray ionization mass spectrum of compound WAP.
Fig. S10 1H NMR (600 MHz, 298K) spectra of product G.

Fig. S11 13C NMR (150MHz, 298K) spectra of product G.
Fig. S12 Electrospray ionization mass spectrum of compound G.

References: