Supporting Information

Trans- A₂B – Corrole Bearing 2,3-di(2-pyridyl)quinoxaline(DPQ) / Phenothiazine Moiety’s: Synthesis, Characterization, Electrochemistry and Photophysics

Jaipal Kandhadi, Wei-Cong Yan, Fan Cheng, Hui Wang,* and Hai-Yang Liu*

*State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China.

Department of Chemistry, Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Table of Contents

Table S1
Singlet excited state properties of F10C-PTZ and F10C-DPQ dyads by B3LYP method in dichloromethane solvent.

\[\frac{I_{\text{dyad}}}{I_{\text{ref}}} \] values for F10C-PTZ and F10C-DPQ w.r.t. reference compound “tpfc”, when excited at 420 nm.

Fig. S1
HRMS Spectrum of F10C-DPQ dyad. 2

Fig. S2
HRMS Spectrum of F10C-PTZ dyad. 2

Fig. S3
ESI-MS Spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline). 3

Fig. S4
ESI-MS Spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde). 4

Fig. S5
\(^1\text{H}-\text{NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline)}\) in CDCl\(_3\). 4

Fig. S6
\(^{13}\text{C}-\text{NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline)}\) in CDCl\(_3\). 5

Fig. S7
\(^1\text{H}-\text{NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline)}\) in CDCl\(_3\). 5

Fig. S8
\(^{13}\text{C}-\text{NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline)}\) in CDCl\(_3\). 6

Fig. S9
\(^1\text{H}-\text{NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde)}\) in CDCl\(_3\). 6

Fig. S10
\(^{13}\text{C}-\text{NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde)}\) in CDCl\(_3\). 7

Fig. S11
\(^1\text{H}-\text{NMR spectrum of F10C-DPQ dyad in CDCl}_3\). 7

Fig. S12
\(^{19}\text{F}-\text{NMR spectrum of F10C-DPQ dyad in CDCl}_3\). 8

Fig. S13
\(^{13}\text{C}-\text{NMR spectrum of F10C-DPQ dyad in CDCl}_3\). 8

Fig. S14
\(^1\text{H}-\text{NMR spectrum of F10C-PTZ dyad in CDCl}_3\). 9

Fig. S15
\(^{13}\text{C}-\text{NMR spectrum of F10C-PTZ dyad in CDCl}_3\). 9

Fig. S16
\(^{19}\text{F}-\text{NMR spectrum of F10C-PTZ dyad in CDCl}_3\). 10

Fig. S17
Theoretical absorption spectra of F10C-PTZ and F10C-DPQ dyads by using B3LYP method PCM model in dichloromethane solvent.

Fig. S18
Emission spectra (a) & (b) and Excitation spectra (c) & (d) of the F10C-PTZ dyad in toluene and DMF, free energy change for energy transfer in different solvents were shown in bottom.

Fig. S19
Emission spectra of F10C-PTZ and F10C-DPQ dyads in Acetonitrile and dimethylformamide (\(\lambda_{\text{ex}} = 420 \text{ nm}\) and O.D. of all the samples were 0.05).

Fluorescence decay of the pristine corrole (5,10,15tris(pentafluorophenyl)corrole) in four different solvents (\(\lambda_{\text{ex}} = 420 \text{ nm}\)) and \(\lambda_{\text{em}}\) monitored at their respective wavelengths in different solvents.

Fig. S21
Energy level diagram of the both the dyads in CH\(_2\)Cl\(_2\). 13
Table S1: Singlet excited state properties of F10C-PTZ and F10C-DPQ dyads by B3LYP method in dichloromethane solvent.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\lambda_{\text{max}})</th>
<th>(f)</th>
<th>(E) eV</th>
<th>% of Molecular Orbital Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10C-PTZ</td>
<td>306</td>
<td>0.073</td>
<td>4.04</td>
<td>H-2 (\rightarrow) L+2 (26%), H-1 (\rightarrow) L+2 (48%), H-11 (\rightarrow) LUMO (6%), H-1 (\rightarrow) L+3 (3%), HOMO (\rightarrow) L+5 (7%)</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>1.166</td>
<td>3.17</td>
<td>H-2 (\rightarrow) L+1 (61%), H-1 (\rightarrow) L+1 (18%), H-1 (\rightarrow) LUMO (4%), HOMO (\rightarrow) LUMO (8%)</td>
</tr>
<tr>
<td></td>
<td>399</td>
<td>0.84</td>
<td>3.10</td>
<td>H-2 (\rightarrow) LUMO (18%), H-1 (\rightarrow) L+1 (43%), HOMO (\rightarrow) L+1 (16%), H-1 (\rightarrow) LUMO (7%)</td>
</tr>
<tr>
<td></td>
<td>449</td>
<td>0.56</td>
<td>2.75</td>
<td>H-2 (\rightarrow) LUMO (10%), H-2 (\rightarrow) L+1 (13%), H-1 (\rightarrow) L+1 (26%), HOMO (\rightarrow) L+1 (44%)</td>
</tr>
<tr>
<td></td>
<td>590</td>
<td>0.279</td>
<td>2.10</td>
<td>HOMO (\rightarrow) LUMO (86%), H-2 (\rightarrow) L+1 (3%), H-1 (\rightarrow) LUMO (3%), H-1 (\rightarrow) L+1 (6%)</td>
</tr>
<tr>
<td>F10C-DPQ</td>
<td>329</td>
<td>0.063</td>
<td>3.76</td>
<td>HOMO (\rightarrow) L+4 (86%), H-8 (\rightarrow) LUMO (4%), H-6 (\rightarrow) LUMO (3%)</td>
</tr>
<tr>
<td></td>
<td>352</td>
<td>0.158</td>
<td>3.51</td>
<td>H-5 (\rightarrow) L+1 (49%), H-3 (\rightarrow) L+1 (14%), H-2 (\rightarrow) L+1 (19%), H-14 (\rightarrow) L+1 (4%), H-5 (\rightarrow) L+2 (4%)</td>
</tr>
<tr>
<td></td>
<td>393</td>
<td>1.024</td>
<td>3.15</td>
<td>H-1 (\rightarrow) L+2 (78%), HOMO (\rightarrow) LUMO (11%), H-4 (\rightarrow) LUMO (2%), H-2 (\rightarrow) LUMO (3%)</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>1.421</td>
<td>2.98</td>
<td>H-1 (\rightarrow) LUMO (29%), HOMO (\rightarrow) L+2 (58%), HOMO (\rightarrow) L+3 (5%)</td>
</tr>
<tr>
<td></td>
<td>569</td>
<td>0.332</td>
<td>2.17</td>
<td>H-1 (\rightarrow) L+2 (11%), HOMO (\rightarrow) LUMO (78%), H-1 (\rightarrow) LUMO (5%), HOMO (\rightarrow) L+2 (3%)</td>
</tr>
</tbody>
</table>

* Theoretical absorbance in nm, \(f \) Oscillator strength, \(E \) Excited state energy in eV.

Table S2. \(I_{(\text{dyad})} / I_{(\text{ref})} \) values for F10C-PTZ and F10C-DPQ w.r.t. reference compound “tpfc”, when excited at 420 nm.

<table>
<thead>
<tr>
<th></th>
<th>CH2Cl2</th>
<th>PhMe</th>
<th>MeCN</th>
<th>DMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10C-PTZ</td>
<td>0.29</td>
<td>0.57</td>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>F10C-DPQ</td>
<td>0.39</td>
<td>0.55</td>
<td>0.0060</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

Fig. S1: HRMS Spectrum of F10C-DPQ dyad.
Fig. S2: HRMS Spectrum of F10C-PTZ dyad.

Fig. S3: ESI-MS Spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline).
Fig. S4: ESI-MS Spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde).

Fig. S5: 1H-NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline) in CDCl$_3$.
Fig. S6: 13C-NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline) in CDCl$_3$.

Fig. S7: 1H-NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline) in CDCl$_3$.
Fig. S8: 13C-NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline) in CDCl$_3$.

Fig. S9: 1H-NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde) in CDCl$_3$.
Fig. S10: 13C-NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde) in CDCl$_3$.

Fig. S11: 1H-NMR spectrum of F10C-DPQ dyad in CDCl$_3$.
Fig. S12: 19F-NMR spectrum of F10C-DPQ dyad in CDCl$_3$

Fig. S13: 13C-NMR spectrum of F10C-DPQ dyad in CDCl$_3$
Fig. S14: 1H-NMR spectrum of F10C-PTZ dyad in CDCl$_3$

Fig. S15: 13C-NMR spectrum of F10C-PTZ dyad in CDCl$_3$
Fig. S16: 19F-NMR spectrum of F10C-PTZ dyad in CDCl$_3$.

Fig. S17: Theoretical absorption spectra of F10C-PTZ and F10C-DPQ dyads by using B3LYP method PCM model in dichloromethane solvent.
Fig. S18: Emission spectra (a) & (b) and Excitation spectra (c) & (d) of the F10C-PTZ dyad in toluene and DMF, free energy change for energy transfer in different solvents were shown in bottom.
Fig. S19: Emission spectra of F10C-PTZ and F10C-DPQ dyads in Acetonitrile and dimethylformamide ($\lambda_{ex} = 420$ nm and O.D. of all the samples were 0.05).

Fig. S20: Fluorescence decay of the pristine corrole (5,10,15tris(pentafluorophenyl)corrole) in four different solvents ($\lambda_{ex} = 420$ nm and λ_{em} monitored at their respective wavelengths in different solvents.)
Fig. S21: Energy level diagram of the both the dyads in CH$_2$Cl$_2$. the singlet state energy of the F10C-DPQ was assumed to 3.04 eV, due to lack of emission of pristine DPQ, we cannot overlap the absorption and emission of the DPQ, but we have estimated the value according to previous reports reference - 22 in the main text.