SUPPLEMENTARY INFORMATION

Direct Synthesis of Dicarbollides

Oleg L. Tok,^a Josef Holub,^a Aleš Růžička,^b Zdeńka Růžičková^b and Bohumil Štíbr^{a*}

^{*a*}Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Husinec-Řež 1001, Czech Republic ^{*b*}Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic

Submitted to New Journal of Chemistry

Table S1. Assignments in the ¹¹B NMR spectra of the isolated dicarbollide anions (Et₃NH⁺ salts in CD₃CN).

compound	B(9,11)	B(5,6)	B(3)	B(2,4)	B(10)	B(1)
2a ⁻	-12.1/136/1.85	-18.0/124/1.13	-18.7/142/1.67	-23.3/147/1.13	-34.4/132/32/0.02	-39.0/140/0.44
2b	-9.4/131/1.80	-18.6/142/1.25	-9.8/170/ 1.44	-18.6/142/1.01	-35.1/141/53/-0.14	-37.1/146/0.35
2c ⁻	-9.0/147/ 2.00	-17.0/146/1.24	-13.9/171/1.76	-19.9/150/1.71	-33.0/128/25/0.15	-36.1/134/0.62
	-10.6/140/2.06	-18.2/150/1.19		-22.8/153/1.22		
2d ⁻	-8.8/136/ 2.01	-16.4/137/1.41	-13.9/159/2.23	-20.4/143/1.53	-33.2/129/52/0.43	-36.8/140/0.84
	-11.4/137/2.01	-18.4/132/1.41		-22.4/140/1.53		
2e ⁻	-10.1/135/ 1.94	-13.7/134/1.36	-17.5/156/1.63	-20.1/148/1.20	-33.5/126/43/0.48	-37.5/137/0.00
	-11.1/135/1.87	-18.7/138/1.06		22.7/148/1.09		

Ordered as $\delta^{(11}B)^{/1}J_{BH}/\delta^{(11}H)_{BH}$, assigned by [¹¹B-¹¹B]-COSY and [¹¹B-¹H]-correlation spectroscopy.

EXAMPLES OF NMR MEASUREMENTS

Fig. S1. ¹¹B{¹H} NMR spectra (128.3 MHz) of (a) 4-Et₃N-*arachno*-B₉H₁₃ (1) in CD₃CN, (c) 7,8-*nido*- $C_2B_9H_{12}^-$ NHEt₃⁺ (**2a**) (in CD₃CN), synthesized by Hawthorne's method and (b) reaction mixture, obtained after heating of 1 with an excess of C₂H₂ in toluene (125°C, 4 h) and containing starting **1** and product **2a** in ca. 1:3 ratio.

Fig. S2. ¹¹B{¹H} and ¹¹B NMR spectra of *nido*-7,8-C₂B₉H₁₂ NHEt₃⁺ (**2a**⁻) (128.3 MHz, CD₃CN).

Fig. S3. ¹¹B{¹H} and ¹¹B NMR spectra of 7,8-Me₂-*nido*-7,8-C₂B₉H₁₀ NHEt₃⁺ (**2b**⁻) (128.3 MHz, CD₃CN).

Fig. S4. ¹¹B-¹¹B COSY and ¹³C NMR NMR spectra of 7,8-Me₂-*nido*-7,8-C₂B₉H₁₀)NHEt₃⁺ (**2b**) (128.3 and 150.9 MHz MHz, CD₃CN).

Fig. S5. ¹¹B{¹H}, ¹¹B, and [¹¹B-¹¹B]-COSY NMR spectra of 7-Ph-*nido*-7,8-C₂B₉H₁₁⁻ NHEt₃⁺ (**2c**⁻) (128.3 MHz, CD₃CN).

Fig. S6. 190 MHz¹¹B{¹H} and ¹¹B NMR spectra of 7-naphtyl-*nido*-7,8-C₂B₉H₁₁⁻ NHEt₃⁺ (**2d**⁻)(192.6 MHz, CD₃CN).

Fig. S7. ¹³C NMR spectrum (150.9 MHz, CD₃CN) of 7-naph-*nido*-7,8-C₂B₉H₁₁⁻ NHEt₃⁺ (**2d**⁻).

Fig. S8. 190 MHz ¹¹B{¹H} and [¹¹B-¹¹B]-COSY NMR spectra of 7-Me₃Si-*nido*-7,8-C₂B₉H₁₁⁻ NHEt₃⁺ (**2e**⁻) (192.6 MHz, CD₃CN).

Fig. S9. ¹H NMR and ¹H {¹¹B} spectra of 7-Me₃Si-*nido*-7,8-C₂B₉H₁₁⁻ NHEt₃⁺ ($2e^{-}$) (600 MHz, CD₃CN).