Supporting Information

Natural Solvent-Assisted Synthesis of Amphiphilic Co-Polymeric Nanomicelle for
Prolonged Release of Camptothecin Delivery

Periyakaruppan Pradeepkumara, Abdallah Mohamed Elgorbanb, Ali Hassan Bahkalib and
Mariappan Rajana

aBiomaterials in Medicinal Chemistry Laboratory, Department of Natural Products
Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India

bDepartment of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia

*Tel.: +91 9488014084; Fax: 0452-2459845; Email: rajanm153@gmail.com (M. Rajan)
S.Figure1. FT-IR frequencies of (A) Choline chloride; (B) Citric acid; (C) DES-I solvent and (D) DES-II solvent.
S. Figure 2. NMR spectrum of (A) Choline chloride; (B) Citric acid; (C) DES-I solvent and D) DES-II solvent
S. Figure 3. A) Encapsulation efficiency of CPT on the poly (ε-cap-co-CA) carrier; B) Encapsulation pattern of CPT loaded poly (ε-cap-co-CA), C) Drug loading capacity of poly (ε-cap-co-CA) carrier.
S. Figure 4. Zeta potential of the (A) poly (ε-cp-co-CA) micelle and (B) CPT drug loaded poly (ε-cp-co-CA) micelle.
S.Figure 5. *In-vitro* drug releasing UV-Visible spectroscopy pattern of CPT loaded poly (ε-cap-co-CA) carrier in various physiological environments (A) pH 2.6; (B) pH 5.5; (C) pH 6.8 and (D) 7.4.
S. Figure 6. *In-vitro* drug releasing profile of CPT loaded poly (ε-cap-co-CA) carrier in various physiological environments (A) pH 2.6; (B) pH 5.5; (C) pH 6.8 and (D) 7.4
S. Figure 7. (A) cytotoxicity and (B) cell viability of Poly (ɛ-cp-co-CA) micelle and CPT loaded Poly (ɛ-cp-co-CA) carrier with different concentrations like 25 µg, 50 µg, and 100 µg on the A549 lung cancer cells and normal L929 cell line respectively, C) line graph of the IC$_{50}$ value, P<0.005, (n=3).
Table 1. Chemical shifts values from 1H NMR spectrum with the reference solvent DMSO-d_6 of (A) Choline chloride; (B) Citric acid, and DESs mixtures C) DES-I, D) DES-II.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Choline chloride</th>
<th>Citric acid</th>
<th>DES-I</th>
<th>DES-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choline chloride (A)</td>
<td>OH-CH$_2$(5.57), N-CH$_3$, N(CH$_3$)$_3$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Citric acid (B)</td>
<td>-</td>
<td>Double of doublet Methylene protons (2.70, 2.60)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DES-I (C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DES-II (D)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

δ (ppm)