Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI)

A highly sensitive pyridine-dicarbohydrazide based chemosensor for colorimetric

recognition of Cu²⁺, AMP²⁻, F⁻ and AcO⁻ ions

Rakesh Kumar*a, Harshita Jaina, Parveen Gahlyana, Ankita Joshib and C. N. Ramachandranb

^aDepartment of Chemistry, University of Delhi, Delhi-110007, India

^bDepartment of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand - 247667, India

*Corresponding address: rakeshkp@email.com

Fig. S1 ¹H NMR spectrum of compound 1 in DMSO- d_6 .

Fig. S2 ¹H NMR spectrum of compound 2 in DMSO- d_6 .

Fig. S3 ¹H NMR spectrum of compound L1 in DMSO- d_6 .

Fig. S4 ¹³C NMR spectrum of compound L1 in DMSO- d_6 .

Fig. S5 HRMS of compound L1.

Fig. S6 FT-IR spectrum of compound L1.

Fig. S7 Fluorescence spectra of L1 on excitation at 270 nm.

Fig. S8 Job's Plot for L1 with (a) AcO⁻ and (b) F⁻ in DMSO showing 1:1 stoichiometry.

Fig. S9 Benesi-Hildebrand Plot for UV-Vis titration of L1 with (a) AcO⁻ and (b) F⁻ showing 1:1 binding stoichiometry.

Fig. S10 Absorption response of L1 (10 μ M, DMSO/H₂O, 8:2, v/v) for (a) Acetate and (b) Fluoride at the wavelength of 405 nm in presence of various anions.

Fig. S11 Stack plot of ¹H NMR spectra of compound L1 in presence of NaAc (0-1.0 equiv.) recorded in DMSO- d_6 along with the possible structure of complex of L1 with acetate.

S.No.	Chemosensor	Cu ²⁺ detection limit (in μM)	Method Of detection	Reference
1.	N OCH3	4.58	Fluorescence and Naked eye	S 1
2.		2.98	Naked eye	S2
3.	CI ON-HN HN N O	2.7	Naked eye	S3
4.		1.53	Fluorescence	S4
5.	OH OH OH	1.5	Naked eye	S5
6.	N O NH2 N-NH N O NH2	0.16	Fluorescence and Naked eye	S6

Table. S1 The sensing abilities of receptors (reported in literature) for Cu^{2+} ion along with chemosensor L1.

7. $N = N = N = N = N = N = N = N = N = N $	0.12	Naked eye	Our Work
---	------	-----------	-------------

Table. S2 Response time of various chemosensors reported in literature.

_

S.No.	Chemosensor	Response Time (s)	Reference
1.	Fluorescein hydrazide	7200	S7
2.	Fluorescein derivative	120	S8
3.	Ninhydrin-quinoxaline derivative	60	S9
4.	Phenanthro-imidazole derivative	10	S10
5.	Pyridine-dicarbohydrazide based sensor	5	Our work

Table. S3 The sensing abilities of receptors (reported in literature) for AMP²⁻, F⁻ and AcO⁻ ions along with chemosensor L1.

S.No	Chemosensor	Anions Detected	Limit Of Detection (in µM)	Method Of detection	Reference
1.		AMP ²⁻	0.9	Fluorescence	S11
2.	$ \begin{array}{c} $	AMP ²⁻	2.0	Luminiscence	S12
3.	N OH N N OH HO	AcO-	11	Naked-eye and Fluorescence	S13

4.	NO ₂ NO ₂ NO ₂ NO ₂ NO ₂ OHC	AcO-	3	Naked-eye	S14
5.		F-	100	Fluorescence	S15
6.	HO CI	F-	1.7	Naked-eye and Fluorescence	S16
7.		F ⁻ AcO ⁻ AMP ²⁻	1.4 1.4 0.08	Naked-eye	Our work

Table.S4 Energy gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), ΔE_{H-L} of free ligand (L1), and its complexes with F⁻, CH₃COO⁻, AMP²⁻ and Cu²⁺.

Compound	НОМО	LUMO	ΔE _{H-L} (eV)
Ligand	ANS AREA		4.11
F ⁻ based Complex			2.89
CH ₃ COO ⁻ based complex			2.51
AMP ²⁻ based complex			1.45
Cu ²⁺ based complex			2.37

Reference

S1 R. Martinez, F. Zapata, A. Caballero, A. Espinosa, A. Tarraga and P. Molina, *Org. Lett.*, 2006, **8**, 3235-3238.

S2 H. Kim, Y. J. Na, E. J. Song, K. B. Kim, J. M. Bae and C. Kim, *RSC Adv.*, 2014, **4**, 22463-22469.

S3 J. Y. Noh, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee and C. Kim, Dalton Trans., 2014, 43, 5652-5656.

S4 A. K. Mahapatra, S. Mondal, S. K. Manna, K. Maiti, R. Maji, M. R. Uddin, S. Mandal, D. Sarkar, T. K. Mondal and D. K. Maiti, *Dalton Trans.*, 2015, **44**, 6490-6501.

S5 K. B. Kim, H. Kim, E. J. Song, S. Kim, I. Noh and C. Kim, *Dalton Trans.*, 2013, **42**, 16569-16577.

S6 M. Saleem, K. -H. Lee, J. Lumin., 2014, 145, 843-848.

S7 X. Chen and H. Ma, Anal. Chim. Acta., 2006, 575, 217-222.

S8 T. Li, Z. Yang, Y. Li, Z. Liu, G. Qi, B. Wang, Dyes Pigm., 2011, 88, 103-108.

S9 A. Kumar, V. Kumar, U. Diwan, Sens. Actuators, B, K. K. Upadhyay, 2013, 176, 420-427.

S10 D. Cheng, X. Liu, H. Yang, T. Zhang, A. Han and L. Zang, Sensors, 2017, 17, 35-43.

S11 V. Bhalla, V. Vij, M. Kumar, P. R. Sharma and T. Kau, Org. Lett., 2012, 14, 1012-1015.

S12 J. Sahoo, R. Arunachalam, P. S. Subramanian, E. Suresh, A. Valkonen, K. Rissanen and M. Albrecht, *Angew. Chem. Int. Ed.*, 2016, **55**, 1-6.

S13 S. Goswami, S. Maity, A. K. Das and A. C. Maity, *Tetrahedron Lett.*, 2013, 54, 6631-6634.

S14 V. K. Gupta, A. K. Singh and N. Gupta, Sens. Actuators B, 2014, 204, 125-135.

S15 B. Sui, B. Kim, Y. Zhang, A. Frazer and K. D. Belfield, ACS Appl. Matter. Interfaces., 2013, 5, 2920-2923.

S16 H. Tavallali, G. Deilamy-Rad, A. Parhami and A. Khalafi-Nezhad, *J. Anal. Chem.*, 2014, **69**, 157-161.