SUPPORTING INFORMATION

A Novel Functional Polyurethane as Dielectric Layer for Organic Thin-Film Transistors

Xuesong Wang, a He Wang, b Yao Li, a Ting Xu, c Wei Wang, c Jian Cheng, a Zuosen Shi, a
Donghang Yan a b and Zhanchen Cui a

a. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
b. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130012, P.R. China.
c. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China.

Corresponding Author

*E-mail: cuizc@jlu.edu.cn. Phone: +86-0431-85168217.

*E-mail: yandh@ciac.jl.cn. Phone: +86-0431-85262165.
Fig. S1 The 1H NMR spectrum and structure of 2,2-bis(hydroxymethyl)butyl cinnamate (DMSO, 500 MHz).

Fig. S2 The FT-IR spectrum of 2,2-bis(hydroxymethyl)butyl cinnamate.
The HMBC characterization: \(^1\)H NMR (500 MHz, DMSO) \(\delta\) 7.76 – 7.70 (m, 2H), 7.65 (d, J = 16.0 Hz, 1H), 7.46 – 7.40 (m, 3H), 6.64 (d, J = 16.1 Hz, 1H), 4.45 (t, J = 5.2 Hz, 2H), 4.02 (s, 2H), 3.40 – 3.30 (m, 4H), 1.34 (q, J = 7.5 Hz, 2H), 0.84 (t, J = 7.5 Hz, 3H). FT-IR (KBr, cm\(^{-1}\)): 3692–3110 (s, –OH), 2971 (w, –CH3), 2889 (w, –CH2–), 1697 (s, –C=O), 1637 (s, –C=C), 1454, 1381 (m, benzene).

\[\text{Fig. S3} \] The \(^1\)H NMR spectrum and structure of PU-1 (DMSO, 500 MHz).

The PU-1 characterization: \(^1\)H NMR (500 MHz, DMSO) \(\delta\) 8.12 (s, 1H), 8.07 (s, 14H), 8.03 (s, 1H), 7.65 (d, J = 16.2 Hz, 1H), 6.63 (d, J = 16.2 Hz, 1H), 3.44 (d, J = 35.4 Hz, 10H). FT-IR (KBr, cm\(^{-1}\)): 3714–3169 (s, –OH), 2929 (w, –CH3), 2852 (w, –CH2–), 1724 (s, –C=O), 2230 (m, –CN), 1637 (s, –C=C), 1454, 1373 (m, benzene).
Fig. S4 The FT-IR spectrum of PU-1.

Fig. S5 The 1H NMR spectrum and structure of PU-2 (DMSO, 500 MHz).
The PU-2 characterization: 1H NMR (500 MHz, DMSO) δ 8.12 (s, 2H), 8.08 (s, 12H), 8.02 (d, J = 6.9 Hz, 2H), 7.65 (d, J = 16.0 Hz, 1H), 6.63 (d, J = 16.1 Hz, 1H), 3.47 (d, J = 13.9 Hz, 10H). FT-IR (KBr, cm$^{-1}$): 3714–3169 (s, -OH), 2929 (w, -CH_3), 2852 (w, -CH_2–), 1724 (s, -C=O), 2230 (m, -CN), 1637 (s, -C=C), 1454, 1373 (m, benzene).

The PU-3 characterization: 1H NMR (500 MHz, DMSO) δ 8.11 (s, 4H), 8.08 (s, 8H), 8.03 (s, 4H), 7.65 (d, J = 16.0 Hz, 1H), 6.63 (d, J = 15.9 Hz, 1H), 3.45 (d, J = 33.9 Hz, 10H). FT-IR (KBr, cm$^{-1}$): 3714–3169 (s, -OH), 2929 (w, -CH_3), 2852 (w, -CH_2–), 1724 (s, -C=O), 2230 (m, -CN), 1637 (s, -C=C), 1454, 1373 (m, benzene).
Fig. S7 The 1H NMR spectrum and structure of PU-3 (DMSO, 500 MHz).

Fig. S8 The FT-IR spectrum of PU-3.
Fig. S9 Capacitance–frequency curve for the dielectric film investigated in this study under 0 V bias voltages.