Supplementary Information

Three-dimensional Composite of Co₃O₄ Nanoparticles and Nitrogen Doped Reduced Graphene Oxide for Lignin Model Compounds Oxidation

Jiali Zhang,§a Fangwei Zhang,§a Shouwu Guo*ª and Jingyan Zhang*ª

ª Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

ª State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China

Correspondence should be addressed: swguo@sjtu.edu.cn or jyzhang@ecust.edu.cn
Figure S1. AFM image of the GO used in the work. Inset is the height profile of GO. The height of GO is ~1 nm, revealing their single atomic layer motif.
Figure S2. (a) XRD patterns of Co$_3$O$_4$ nanoparticles (1) and 3D Co$_3$O$_4$/N-rGO (2), (b) FT-IR spectra of the GO (1), Co$_3$O$_4$ nanoparticles (2) and 3D Co$_3$O$_4$/N-rGO (3).
Figure S3. N_2 adsorption/desorption isotherms (a) and pore size distributions (b) of Co_3O_4 nanoparticles, 3D N-rGO and 3D Co_3O_4/N-rGO.
Figure S4. (a) UPLC of the oxidation product of VA. (b-d) Mass spectrum of the oxidation products of VA under ESI+ mode.
Figure S5. (a) UPLC of the oxidation product of vanillyl alcohol. (b-d) Mass spectrum of the oxidation products of vanillyl alcohol under ESI⁺ mode.
Figure S6. TEM image (a) and N₂ adsorption/desorption isotherm (b) of the 3D Co₃O₄/N-rGO after the 5th catalytic cycling runs.