Novel insights into the effect of folate-albumin binding on the transport of ascorbic acid as an anticancer agent: Chemometric analysis based on combined spectroscopic and electrochemical studies

Saleheh Abbasi a, Sajjad Gharaghani *b, Ali Benvidi *a, Masoud Rezaeinasab a

a Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran
b Laboratory of Bioinformatics & Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

*1 Corresponding author: E-mail addresses: s.gharaghani@ut.ac.ir; Tel.: +98 216 111 3451; Fax: +98-216-6956977

*2 Corresponding author: E-mail addresses: abenvidi@yazd.ac.ir, benvidi89@gmail.com ; Tel.: +98 353 812 2645; Fax: +98-353-8210644
Scheme 1 (A) Oxidation of ascorbic acid at GCE (B) Oxidation of folic acid at GCE
Table S1. Amino acid residues involved in the interaction with the free binding energy for the best selected docking positions

<table>
<thead>
<tr>
<th>Complex</th>
<th>$\Delta G_{\text{binding}}$ (KJ mol$^{-1}$)</th>
<th>Amino acids in the vicinity of the ligands</th>
</tr>
</thead>
</table>
Figure captions

Fig. S1 Relationship between $\log[\Delta I/(\Delta I_{\text{max}}-\Delta I)]$ and $\log[\text{AA}]$.

Fig. S2 Relationship between $\log[\Delta I/(\Delta I_{\text{max}}-\Delta I)]$ and $\log[\text{FA}]$.
Fig. S1

A \(y = 2.1751x + 5.8531 \)
\(R^2 = 0.9615 \)

B \(y = 1.7093x + 4.3198 \)
\(R^2 = 0.9949 \)

C \(y = 3.7089x + 9.6248 \)
\(R^2 = 0.9967 \)
Fig. S2

A

\[y = 2.4146x + 6.3169 \]

\[R^2 = 0.9692 \]

B

\[y = 2.136x + 5.1855 \]

\[R^2 = 0.9937 \]

C

\[y = 4.5518x + 11.509 \]

\[R^2 = 0.9945 \]