Supporting Information

A novel 3-hydroxychromone fluorescence probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism

Jing-Jing Liu, Xiang-Zhu Chen, Yuan-Yuan Zhang, Gui Gao, Xue-Yan Zhang, Shi-Cong Hou*, Yuxia Hou*

College of Science, China Agricultural University, Beijing, 100193, P.R. China.

Contents

1. Spectra

2. Reaction mechanism

3. Detection limit

4. MTT assay

5. 1H NMR, 13C NMR and HRMS analyses

6. Table S1
1. Spectra

Fig. S1 Time-dependent fluorescent intensity changes of probe A (20μM) at 537nm upon addition of NaSH(200μM) in PBS buffer (20 mM, pH 7.4) with 20% DMSO and 3 mM CTAB at 37 °C.

Fig. S2 The photo-stability of probe A. The fluorescent change at 537nm of probe A (20μM) upon addition of NaSH(200μM) in PBS buffer (20 mM, pH 7.4) with 20% DMSO and 3 mM CTAB at 37 °C.
2. Reaction mechanism

Fig. S3 HRMS spectrum (ESI negative ion mode) of probe A after treatment with NaHS.

3. Detection limit

The physiological relevant H$_2$S concentration is estimated ranging from nano- to millimolar levels.1 The detection limit of probe A for H$_2$S is 49 nM, which falls well within this range. The detection limit was calculated based on the method reported in the previous literature.2 The fluorescence emission spectrum of probe A was measured by three times and the standard deviation of blank measurement was achieved. The fluorescence intensity at 537 nm was plotted as a concentration of H$_2$S. The detection limit was calculated by using detection limit $3\sigma/k$: Where σ is the standard deviation of blank measurement; k is the slope between the fluorescence intensity versus H$_2$S concentration.

Reference

4. MTT assay

In-vitro cytotoxicity was measured using the colorimetric methyl thiazolyl tetrazolium (MTT) assay in MDBK cells. Cells were seeded in a 96-well plate and allowed to adhere for 24 h. Subsequently, the cells were incubated with different concentrations of probe A (0, 5, 10, 20, 40, or 80 µM, containing 1% DMSO) for 24 h. Finally, the viabilities of the MDBK cells in the presence of probe A were assessed using MTT cytotoxicity assays.

![Percentage of viable MDBK cells after incubation with different concentrations of probe A for 24 h.](image)

Fig. S4 Percentage of viable MDBK cells after incubation with different concentrations of probe A for 24 h.

5. 1H NMR, 13C NMR and HRMS analyses
1H NMR spectrum of compound 1 in CDCl$_3$.

13C NMR spectrum of compound 1 in CDCl$_3$
1H NMR spectrum of A-OH in DMSO-d6.

13C NMR spectrum of A-OH in DMSO-d6.
1H NMR spectrum of A in DMSO-d6.

13C NMR spectrum of A in DMSO-d6.
High resolution mass spectra of probe A.

6. Table S1

<table>
<thead>
<tr>
<th>Probe</th>
<th>Fluorophore</th>
<th>λ<sub>ex</sub>/λ<sub>em</sub> (nm)</th>
<th>Response time</th>
<th>Detection limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe-1</td>
<td>fluorescein</td>
<td>465/515</td>
<td>60min</td>
<td>1-10μM</td>
<td>Angew. Chem., Int. Ed., 2011,50, 10327–10329</td>
</tr>
<tr>
<td>HF-PBA</td>
<td>3-Hydroxyflavone</td>
<td>345/520</td>
<td>30min</td>
<td>0.075μM</td>
<td>Sensors and Actuators, B.Chemical234(201 6)231-238</td>
</tr>
<tr>
<td>This work</td>
<td>2-(benzofuran-2-yl) -3-hydroxy-4H-chromen-4-one</td>
<td>440/537</td>
<td>20min</td>
<td>0.049μM</td>
<td>The present work</td>
</tr>
</tbody>
</table>

Table S1 Summary of fluorescent probes for H₂S