Electronic Supplementary Information

Deep oxidative desulfurization of dibenzothiophene with $\{Mo_{132}\}$ nanoball supported on activated carbon as efficient catalyst at room temperature

Ali Mojaverian Kermani^a, Ali Ahmadpour^{a,*}, Tahereh Rohani Bastami^b, Mahboube Ghahramaninezhad^b

^a Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

^b Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran

*Corresponding author: Tel/fax: +98 51 38805006;

E-mail address: ahmadpour@um.ac.ir

Fig. S1. UV-Vis spectrum of $\{Mo_{132}\}$ aqueous solution

Fig. S2. TEM images of prepared $\{Mo_{132}\}$ in ethanol

Fig. S3. Nitrogen adsorption/desorption isotherms of $\{Mo_{132}\}$

H₂-TPR analysis:

The H_2 -temperature programmed reduction (H_2 -TPR) experiment was performed on 50 mg of the catalyst ($\{Mo_{132}\}/AC$ -20) placed in a U-shaped quartz reactor. Prior to the TPR run, the catalyst was degassed in flow of 10 sccm Ar at 110°C for 1 hour, and cooled down to 40°C. Then, the sample was heated from 40 to 900°C at a heating rate of 10°C/min in a flow of 5% H_2/Ar mixture (10 sccm).

The H_2 -TPR was employed to study the reducibility of the catalyst. As shown in Fig. S4, $\{Mo_{132}\}/AC$ -20 exhibited two reduction peaks, a sharp peak at 560°C and a weak peak at higher temperature of 710 °C. These two peaks indicate reduction of Mo^{VI} and Mo^{VI} in $\{Mo_{132}\}$ cluster in the catalyst.

Fig. S4. H_2 -TPR profile of $\{Mo_{132}\}/AC-20$

Table S1 Reusability of $\{Mo_{132}\}/AC-20$ and $\{Mo_{132}\}$ content of the catalyst in each step

Catalyst samples	DBT removal (%)	Actual {Mo ₁₃₂ } contents (%)
Fresh catalyst	99.5	9.04
1st reuse	98.1	8.59
2 nd reuse	97.8	8.38
3 rd reuse	97.7	8.35

Fig. S5. GC-MS analysis of the acetonitrile phase at the end of the process. (a) GC-MS chromatogram, (b) The standard mass spectrum of DBT sulfone, (c) The mass spectrum of the oxidation product of DBT. Reaction condition: T = 25 °C, $\{Mo_{132}\}/AC-20$ catalyst dosage = 0.0025 g cat/ g F, O/S = 10, t = 30 min, initial sulfur content = 500 ppm.