Supporting Information

Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube-N-carboxymethyl chitosan composite modified glassy carbon electrode

Zhenliang Li, Zunli Mo, Pengji Yan, Shujuan Meng, Ruijuan Wang, Xiaohui Niu, Nijun Liuand Ruibin Guo

*Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.

bCollege of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, China.

E-mail: mozlnwnu2010@163.com (Zunli Mo), nwnugrb@163.com (Ruibin Guo)
Fig. 1S The SEM and TEM image of (A) MWCNTs, (B) MWCNTs-EA and (C) MWCNTs-EA-NCCS (D) MWCNTs-EA-NCCS.

Fig. 2S FT-IR spectra of (a) CS (b) NCCS (c) MWCNTs-COOH (d) MWCNTs-EA and (e) MWCNTs-EA-NCCS.

Fig. 3S The idea of enantioseparation

In a typical process, MWCNTs-EA-NCCS were dispersed in ethanol solution under ultrasonication to obtain a homogeneous suspension. The mixed suspension
was then sprayed on stainless cloth mesh substrates using a spray gun of air pressure, as shown in Fig. 3S. This cloth mesh was used as filter membrane in the chiral separation system, which system can finish chiral separation by repeating filtration in our opinion.