Synthesis of Symmetrical and Unsymmetrical Tellurides via Silver Catalysis

Bruna Goldani,a Manoela do Sacramento,a Eder J. Lenardão,a Ricardo F. Schumacher,a Thiago Barcellosb* and Diego Alvesa*

a LASOL - CCQFA, Universidade Federal de Pelotas - UFPe - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil.
b Laboratory of Biotechnology of Natural and Synthetic Products, University of Caxias do Sul, Caxias do Sul, RS, Brazil.

e-mail: tbsilva6@ucs.br and diego.alves@ufpel.edu.br

Contents

General Information..S2

General Procedure for Silver(I)-Catalyzed Synthesis of Diaryl Tellurides (3).......S2

Spectral data of the products ...S3

High Resolution Mass Spectrometry Experiments ...S8

Selected Spectra...S11
General Information: The reactions were monitored by TLC carried out on Merck silica gel (60 F_{254}) by using UV light as visualizing agent and 5% vanillin in 10% H_{2}SO_{4} and heat as developing agents. Baker silica gel (particle size 0.040-0.063 mm) was used for flash chromatography. Proton and carbon-13 nuclear magnetic resonance spectra (^{1}H NMR) were acquired using a Bruker Fourier 300 spectrometer (300 MHz for ^{1}H NMR and 75 MHz for ^{13}C NMR). All NMR spectra were recorded in CDCl_{3} solutions. Chemical shifts are reported in ppm, referenced to tetramethylsilane (TMS) as the internal reference in the ^{1}H NMR spectra or referenced to the solvent peak in the ^{13}C NMR spectra. Coupling constants (J) are reported in Hertz. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), dd (doublet of doublet), dt (doublet of triplet), t (triplet), q (quartet), quint (quintet), sex (sextet) and m (multiplet). Low-resolution mass spectra were obtained with a Shimadzu GC-MS-QP2010 mass spectrometer. High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics microOTOF-Q II instrument.

General Procedure for Silver(I)-Catalyzed Synthesis of Diaryl Tellurides 3a-u:
To a 5 mL Schlenk tube equipped with a small magnetic stirring bar were added the appropriate diorganoyl ditelluride 1a-h (0.2 mmol), the appropriate aryl boronic acid 2a-n (0.4 mmol), AgNO_{3} (0.04 mmol, 10 mol%) and 1,4-dioxane (0.8 mL). The resulting mixture was stirred at 100 °C for 6 h. After that, the reaction mixture was cooled to room temperature, and was quenched using water (5 mL). The mixture was then extracted using ethyl acetate (10 mL) and washed with water (3 x 10 mL). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated under vacuum to yield the crude product, which was purified by flash chromatography on silica gel using hexane or a mixture of hexane/ethyl acetate as eluent. Spectral data for the products prepared are listed below.
Spectral data of the products

Phenyl(4-methoxyphenyl)telluride (3a):
Yield: 0.117 g (93%); Yellow solid; mp 57-59 °C; 1H NMR (CDCl$_3$, 300 MHz): δ 7.72 (dt, $J = 8.8$, 2.8 Hz, 2H), 7.61 - 7.50 (m, 2H), 7.27 - 7.08 (m, 3H), 6.78 (dd, $J = 8.8$, 2.8 Hz, 2H), 3.77 (s, 1H). 13C NMR (CDCl$_3$, 75 MHz): δ 159.9, 141.15, 136.3, 129.3, 127.2, 115.9, 115.5, 103.1, 55.1. MS m/z (relative intensity): 314 (M$^+$, 24), 312 (22), 184 (100), 169 (62), 141 (37), 115 (18), 92 (11), 77 (44), 51 (26).

4-Chlorophenyl(4-methoxyphenyl)telluride (3b):
Yield: 0.124 g (89%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 7.72 (d, $J = 8.8$ Hz, 2H), 7.46 (d, $J = 8.5$ Hz, 2H), 7.12 (d, $J = 8.5$ Hz, 2H), 6.80 (d, $J = 8.8$ Hz, 2H), 3.80 (s, 3H). 13C NMR (CDCl$_3$, 75 MHz): δ 160.1, 141.3, 137.5, 133.6, 129.4, 115.6, 113.6, 102.9, 55.1. MS m/z (relative intensity): 348 (M$^+$, 31), 346 (28), 218 (100), 203 (45), 175 (20), 75 (11), 63 (12). HRMS calculated for C$_{13}$H$_{11}$ClOTe [M$^+$]: 347.9561, Found: 347.9545.

4-bromophenyl(4-methoxyphenyl)telluride (3c):
Yield: 0.122 g (78%); Yellow solid; mp 42-43°C; 1H NMR (CDCl$_3$, 300 MHz): δ 7.72 (d, $J = 8.8$ Hz, 2H), 7.37 (d, $J = 8.4$ Hz, 2H), 7.26 (d, $J = 8.5$ Hz, 2H), 6.80 (d, $J = 8.8$ Hz, 2H), 3.80 (s, 3H). 13C NMR (CDCl$_3$, 75 MHz): δ 160.1, 141.4, 139.7, 137.7, 132.3, 121.7, 115.6, 102.8, 55.1. MS m/z (relative intensity): 392 (M$^+$, 36), 388 (12), 264 (99), 262 (100), 249 (47), 247 (49), 237 (18), 221 (25), 140 (18), 92 (19), 77 (26), 63 (42), 50 (40). HRMS calculated for C$_{13}$H$_{11}$BrOTe [M$^+$]: 391.9056, Found: 391.9045.

Bis(4-methoxyphenyl)telluride (3d):
Yield: 0.122 g (89%); Yellow solid; mp 46-48 °C; 1H NMR (CDCl$_3$, 300 MHz): δ 7.61 (d, $J = 8.8$ Hz, 4H), 6.74 (d, $J = 8.9$ Hz, 4H), 3.74 (s, 6H). 13C NMR (CDCl$_3$, 75 MHz): δ

159.1, 139.6, 115.3, 104.2, 55.0. MS m/z (relative intensity): 344 (M⁺, 28), 340 (17), 214 (100), 199 (94), 171 (30), 128 (15), 107 (7), 77 (10), 63 (17).

4-Methylphenyl(4-methoxyphenyl)telluride (3e):

Yield: 0.122 g (93%); Yellow oil; ¹H NMR (CDCl₃, 300 MHz): δ 7.68 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.00 (d, J = 8.1 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H), 2.31 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 159.7, 140.5, 137.3, 137.1, 130.2, 115.3, 111.3, 103.5. MS m/z (relative intensity): 328 (M⁺, 32), 296 (52), 237 (46), 198 (100), 183 (63), 155 (29), 91 (19), 65 (21).

Naphthalen-2-yl(4-methoxyphenyl)telluride (3f):

Yield: 0.105 g (72%); Yellow solid; mp 80-83 °C; ¹H NMR (CDCl₃, 300 MHz): δ 8.07 (s, 1H), 7.74 (d, J = 8.8 Hz, 3H), 7.71 - 7.59 (m, 1H), 7.59 (s, 2H), 7.48 - 7.34 (m, 2H), 6.78 (d, J = 8.7 Hz, 2H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 159.7, 140.5, 137.3, 137.1, 130.2, 115.3, 111.3, 103.5. MS m/z (relative intensity): 364 (M⁺, 21), 234 (100), 219 (61), 191 (30), 127 (35), 77 (19), 63 (13). HRMS calculated for C₁₇H₁₄OTe [M⁺]: 364.0107, Found: 364.0118.

Mesityl(4-methoxyphenyl)telluride (3g):

Yield: 0.105 g (74%); Yellow solid; mp 31-32 °C; ¹H NMR (CDCl₃, 300 MHz): δ 7.35 (dt, J = 8.8, 2.9 Hz, 2H), 6.96 (s, 2H), 6.69 (dt, J = 8.8, 2.9 Hz, 2H), 3.73 (s, 3H), 2.53 (s, 6H), 2.28 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 159.0, 145.1, 139.0, 137.2, 127.5, 118.8, 115.3, 104.6, 55.1, 29.7, 29.4, 21.0. MS m/z (relative intensity): 356 (M⁺, 100), 354 (92), 248 (52), 244 (30), 237 (12), 226 (81), 214 (17), 211 (46), 199 (15), 195 (19), 119 (58), 115 (22), 103 (18), 91 (52), 77 (40), 63 (22), 51 (15), 41 (24).

Butyl(4-methoxyphenyl)telluride (3h):

Yield: 0.075 g (64%); Yellow oil; ¹H NMR (CDCl₃, 300 MHz): δ 7.67 (dt, J = 8.8, 2.9 Hz, 2H), 6.75 (dt, J = 8.8, 2.9 Hz, 2H), 3.79 (s, 3H), 2.82 (t, J = 7.3 Hz, 2H), 1.73 (quint,
$J = 7.3$ Hz, 2H), 1.37 (sex, $J = 7.3$ Hz, 2H), 0.88 (t, $J = 7.3$ Hz, 3H). 13C NMR (CDCl$_3$, 75 MHz): δ 159.5, 140.8, 115.0, 100.5, 55.1, 33.8, 24.9, 13.4, 8.7. MS m/z (relative intensity): 294 (M$^+$, 23), 290 (13), 237 (15), 222 (7), 108 (100), 92 (7), 63 (12), 57 (14), 41 (25). HRMS calculated for C$_{11}$H$_{16}$OTe [M$^+$]: 294.0263, Found: 294.0263.

Diphenyl telluride1 (3i):

Yield: 0.104 g (92%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 7.76 - 7.63 (m, 4H), 7.34 - 7.14 (m, 6H). 13C NMR (CDCl$_3$, 75 MHz): δ 137.9, 129.5, 127.8, 114.6. MS m/z (relative intensity): 284 (M$^+$, 23), 280 (15), 206 (10), 154 (100), 77 (85), 51 (49). HRMS calculated for C$_{12}$H$_{10}$Te [M$^+$]: 283.9845, Found: 283.9842.

Phenyl(4-methylphenyl)telluride1 (3j):

Yield: 0.118 g (99%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 7.73 - 7.52 (m, 3H), 7.29 - 7.09 (m, 3H), 7.02 (d, $J = 7.6$ Hz, 2H), 2.32 (s, 3H). 13C NMR (CDCl$_3$, 75 MHz): δ 138.7, 138.0, 137.2, 130.4, 129.3, 127.4, 115.2, 110.2, 21.2. MS m/z (relative intensity): 298 (M$^+$, 27), 168 (100), 153 (21), 91 (51), 77 (35), 65 (32), 51 (29).

Phenyl(4-bromophenyl)telluride (3k):

Yield: 0.090 g (62%); Yellow solid; mp 59-61 °C; 1H NMR (CDCl$_3$, 300 MHz): δ 7.70 - 7.67 (m, 2H), 7.52 - 7.48 (m, 2H), 7.34 - 7.27 (m, 3H), 7.25 - 7.19 (m, 2H). 13C NMR (CDCl$_3$, 75 MHz): δ 139.3, 138.2, 132.6, 129.6, 128.1, 122.5, 114.2, 113.2. MS m/z (relative intensity): 362 (M$^+$, 21), 232 (79), 207 (11), 152 (37), 77 (100), 51 (69). HRMS calculated for C$_{12}$H$_9$BrTe [M$^+$]: 361.8950, Found: 361.8941.

Phenyl(4-chlorophenyl)telluride (3l):

Yield: 0.104 g (82%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 7.73 - 7.63 (m, 2H), 7.57 (d, $J = 8.5$ Hz, 2H), 7.35 - 7.09 (m, 5H). 13C NMR (CDCl$_3$, 75 MHz): δ 139.1, 138.1, 134.2, 129.7, 129.6, 128.1, 114.4, 112.3. MS m/z (relative intensity): 318 (M$^+$, 44), 316 (37), 188 (100), 153 (18), 111 (12), 77 (57), 51 (55). HRMS calculated for C$_{12}$H$_9$ClTe [M$^+$]: 317.9455, Found: 317.9453.
Phenyl(2-methoxyphenyl)telluride (3m):
Yield: 0.093 g (74%); Yellow solid; mp 50-53 °C; \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 7.88 (d, \(J = 6.7\) Hz, 2H), 7.42 - 7.34 (m, 1H), 7.33 - 7.21 (m, 2H), 7.22 - 7.09 (m, 1H), 6.93 (dd, \(J = 7.6, 1.6\) Hz, 1H), 6.81 - 6.65 (m, 2H), 3.83 (s, 3H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta\) 157.9, 141.1, 133.3, 129.5, 128.5, 128.00, 122.3, 111.9, 109.5, 107.6, 55.7. MS m/z (relative intensity): 314 (M\(^+\), 17), 184 (48), 169 (36), 141 (26), 107 (23), 92 (10), 77 (100), 51 (43). HRMS calculated for C\(_{13}\)H\(_{13}\)O\(_2\)Te [M + OH]\(^+\): 330.9978, Found: 330.9985.

Phenyl(2-methylphenyl)telluride (3n):
Yield: 0.083 g (70%); Yellow oil; \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 7.74 - 7.64 (m, 2H), 7.48 - 7.44 (m, 1H), 7.34 - 7.24 (m, 1H), 7.27 - 7.15 (m, 4H), 2.40 (s, 3H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta\) 141.8, 138.6, 137.3, 129.6, 129.3, 128.0, 128.0, 126.7, 119.2, 113.9, 26.0. MS m/z (relative intensity): 298 (M\(^+\), 41), 296 (38), 167 (92), 153 (43), 91 (100), 77 (53), 65 (67), 51 (58). HRMS calculated for C\(_{13}\)H\(_{12}\)Te [M\(^+\)]: 298.0001, Found: 297.9999.

Phenyl(2-bromophenyl)telluride (3o):
Yield: 0.041 g (28%); Yellow oil; \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 7.96 - 7.91 (m, 2H), 7.49 - 7.31 (m, 4H), 7.05 - 6.95 (m, 2H), 6.89 - 6.85 (m, 1H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta\) 141.2, 134.3, 132.0, 130.0, 129.2, 128.0, 127.8, 126.9, 123.9, 114.6. MS m/z (relative intensity): 362 (M\(^+\), 12), 234 (18), 207 (13), 152 (33), 77 (100), 51 (85), 44 (43), 40 (51). HRMS calculated for C\(_{12}\)H\(_8\)BrTe [M\(^+\)]: 361.8950, Found: 361.8940.

Phenyl(2-chlorophenyl)telluride (3p):
Yield: 0.036 g (28%); Yellow oil; \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 7.94 - 7.91 (m, 2H), 7.48 - 7.43 (m, 1H), 7.37 - 7.29 (m, 3H), 7.14 - 7.08 (m, 1H), 6.96 - 6.93 (m, 2H). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta\) 141.3, 136.4, 134.2, 130.0, 129.2, 128.7, 128.0, 127.4, 120.5,
Phenyl(3-trifluoromethylphenyl)telluride2 (3q):

Yield: 0.093 g (66%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 7.89 (s, 1H), 7.82 - 7.70 (m, 3H), 7.40 - 7.17 (m, 5H). 13C NMR (CDCl$_3$, 75 MHz): δ 140.4, 138.8, 133.6 (q, $J_{C-F} = 3$ Hz), 131.4 (q, $J_{C-F} = 32$ Hz), 129.8, 125.5, 128.5, 124.4 (q, $J_{C-F} = 3$ Hz), 123.6 (q, $J_{C-F} = 272$ Hz), 115.8, 113.7. MS m/z (relative intensity): 352 (M$^+$, 15), 222 (88), 203 (10), 153 (16), 145 (17), 126 (20), 95 (11), 77 (100), 51 (72), 40 (16).

Phenyl(naphthalen-2-yl)telluride (3r):

Yield: 0.107 g (80%); Yellow solid; mp 39-42 °C; 1H NMR (CDCl$_3$, 300 MHz): δ 8.23 (s, 1H), 7.82 - 7.76 (m, 1H), 7.74 - 7.63 (m, 5H), 7.49 - 7.42 (m, 2H), 7.32 - 7.16 (m, 3H). 13C NMR (CDCl$_3$, 75 MHz): δ 137.8, 134.7, 134.3, 132.6, 129.5 (2C), 128.6, 127.8, 127.7, 127.4, 126.4, 126.3, 114.8, 111.9. MS m/z (relative intensity): 334 (M$^+$, 12), 204 (100), 127 (59), 101 (10), 77 (48), 51 (33). HRMS calculated for C$_{16}$H$_{12}$Te [M$^+$]: 334.0001, Found: 333.9999.

Phenyl(3-acetylphenyl)telluride (3s):

Yield: 0.068 g (52%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 8.40 - 8.05 (m, 2H), 7.89 - 7.77 (m, 2H), 7.77 - 7.69 (m, 2H), 7.35 - 7.17 (m, 2H), 2.53 (s, 3H). 13C NMR (CDCl$_3$, 75 MHz): δ 197.5, 141.8, 138.5, 137.8, 137.1, 129.6, 129.5, 128.2, 127.5, 115.5, 114.0, 26.6. MS m/z (relative intensity): 326 (M$^+$, 14), 207 (13), 181 (56), 153 (31), 77 (96), 51 (60), 43 (100), 40 (13). HRMS calculated for C$_{14}$H$_{12}$OTe [M$^+$]: 325.9950, Found: 325.9948.

Phenyl(3-bromophenyl)telluride (3t):
Yield: 0.090 g (62%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 7.83 - 7.66 (m, 3H), 7.53 (dt, $J = 7.8$, 1.2 Hz, 1H), 7.43 - 7.16 (m, 4H), 7.03 (t, $J = 7.8$ Hz, 1H). 13C NMR (CDCl$_3$, 75 MHz): δ 139.4, 138.6, 135.7, 130.7, 129.7, 128.3, 123.3, 116.7, 113.9. MS m/z (relative intensity): 362 (M$^+$, 16), 234 (52), 152 (33), 77 (100), 51 (63). HRMS calculated for C$_{12}$H$_9$BrTe [M$^+$]: 361.8950, Found: 361.8932.

Phenyl(3-thienyl)telluride (3u):
Yield: 0.101 g (87%); Yellow oil; 1H NMR (CDCl$_3$, 300 MHz): δ 7.47 - 7.44 (m, 3H), 7.14 - 7.05 (m, 5H). 13C NMR (CDCl$_3$, 75 MHz): δ 136.7, 136.3, 134.4, 129.3, 127.4, 127.1, 115.2, 103.8. MS m/z (relative intensity): 290 (M$^+$, 28), 288 (27), 160 (100), 128 (13), 115 (17), 77 (47), 51 (30).

High Resolution Mass Spectrometry Experiments
The experiments were performed using a Bruker Daltonics micrOTOF-Q II instrument equipped with an ESI source operating in positive mode or negative mode. For mechanistic investigation, aliquots were taken directly from the reaction mixture, immediately solubilized MeCN/MeOH (1:1) and inject in the ESI source at a constant flow rate of 180 µL/min. The Acquisition parameters were: capillary: 4000 V, end plate offset: - 500 V, nebulizer: 0.4 bar, dry gas: 4.0 L min$^{-1}$, and dry heater: 180 °C. The collision cell energy was set to 5.0 eV. The spectra analysis and simulate pattern were performed using Bruker Compass Data Analysis 4.3 software package.

Figure S1. HRMS spectrum (ESI+) collected by direct infusion of diphenyl telluride (0.1 mmol) and equimolar amount of silver(I) nitrate (0.1 mmol) in 1,4-dioxane (400 μL).

Figure S2. Isotope pattern for the positive ion with m/z 518.7929 (A) and the simulated isotope pattern for the formula $\text{C}_{12}\text{H}_{10}\text{Te}_{2}\text{Ag}$ (B).
Figure S3. MS² spectrum (50 eV) of the precursor ion m/z 18 leading to formation of the fragments confirming the structural identity of the intermediate A. The m/z showed in parentheses correspond to the calculated m/z of most intense peak among the isotopic peaks.

Figure S4. MS² spectrum (50 eV) of the precursor ion m/z 438 leading to formation of the fragments the fragments which confirm the structural identity of the intermediate C. The m/z showed in parentheses correspond to the calculated m/z of most intense peak among the isotopic peaks.
Figure S5. Isotope pattern for the positive ion with m/z 438.9092 (A) and the simulated isotope pattern for the adduct with formula $C_{13}H_{12}O_2TeAg$ (B).
Figure S5. 1H NMR (300 MHz) spectrum for compound 3a in CDCl$_3$.

Figure S6. 13C NMR (75 MHz) spectrum for compound 3a in CDCl$_3$.
Figure S7. 1H NMR (300 MHz) spectrum for compound 3b in CDCl$_3$.

Figure S8. 13C NMR (75 MHz) spectrum for compound 3b in CDCl$_3$.
Figure S9. 1H NMR (300 MHz) spectrum for compound 3c in CDCl$_3$.

Figure S10. 13C NMR (75 MHz) spectrum for compound 3c in CDCl$_3$.
Figure S11. 1H NMR (300 MHz) spectrum for compound 3d in CDCl$_3$.

Figure S12. 13C NMR (75 MHz) spectrum for compound 3d in CDCl$_3$.
Figure S13. 1H NMR (300 MHz) spectrum for compound 3e in CDCl$_3$.

Figure S14. 13C NMR (75 MHz) spectrum for compound 3e in CDCl$_3$.
Figure S15. 1H NMR (300 MHz) spectrum for compound 3f in CDCl$_3$.

Figure S16. 13C NMR (75 MHz) spectrum for compound 3f in CDCl$_3$.
Figure S17. 1H NMR (300 MHz) spectrum for compound 3g in CDCl$_3$.

Figure S18. 13C NMR (75 MHz) spectrum for compound 3g in CDCl$_3$.
Figure S19. 1H NMR (300 MHz) spectrum for compound 3h in CDCl$_3$.

Figure S20. 13C NMR (75 MHz) spectrum for compound 3h in CDCl$_3$.
Figure S21. 1H NMR (300 MHz) spectrum for compound 3i in CDCl$_3$.

Figure S22. 13C NMR (75 MHz) spectrum for compound 3i in CDCl$_3$.
Figure S23. 1H NMR (300 MHz) spectrum for compound 3j in CDCl$_3$.

Figure S24. 13C NMR (75 MHz) spectrum for compound 3j in CDCl$_3$.

S21
Figure S25. 1H NMR (300 MHz) spectrum for compound 3k in CDCl$_3$.

Figure S26. 13C NMR (75 MHz) spectrum for compound 3k in CDCl$_3$.
Figure S27. 1H NMR (300 MHz) spectrum for compound 3l in CDCl$_3$.

Figure S28. 13C NMR (75 MHz) spectrum for compound 3l in CDCl$_3$.
Figure S29. 1H NMR (300 MHz) spectrum for compound 3m in CDCl₃.

Figure S30. 13C NMR (75 MHz) spectrum for compound 3m in CDCl₃.
Figure S31. 1H NMR (300 MHz) spectrum for compound 3n in CDCl$_3$.

Figure S32. 13C NMR (75 MHz) spectrum for compound 3n in CDCl$_3$.
Figure S33. 1H NMR (300 MHz) spectrum for compound 3o in CDCl$_3$.

Figure S34. 13C NMR (75 MHz) spectrum for compound 3o in CDCl$_3$.

S26
Figure S35. 1H NMR (300 MHz) spectrum for compound 3p in CDCl$_3$.

Figure S36. 13C NMR (75 MHz) spectrum for compound 3p in CDCl$_3$.
Figure S37. 1H NMR (300 MHz) spectrum for compound 3q in CDCl$_3$.

Figure S38. 13C NMR (75 MHz) spectrum for compound 3q in CDCl$_3$.
Figure S39. 1H NMR (300 MHz) spectrum for compound 3r in CDCl$_3$.

Figure S40. 13C NMR (75 MHz) spectrum for compound 3r in CDCl$_3$.
Figure S41. 1H NMR (300 MHz) spectrum for compound 3s in CDCl$_3$.

Figure S42. 13C NMR (75 MHz) spectrum for compound 3s in CDCl$_3$.
Figure S43. 1H NMR (300 MHz) spectrum for compound 3t in CDCl$_3$.

Figure S44. 13C NMR (75 MHz) spectrum for compound 3t in CDCl$_3$.
Figure S45. 1H NMR (300 MHz) spectrum for compound 3u in CDCl$_3$.

Figure S46. 13C NMR (75 MHz) spectrum for compound 3u in CDCl$_3$.