A concise synthesis of cyclobrassinin and its analogues via thiyl radical aromatic substitution

Xin Zhong, Ning Chen,* Jiaxi Xu*

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China. E-mail: chenning@mail.buct.edu.cn; jxxu@mail.buct.edu.cn

Fax/Tel: +8610-64435565

Electronic Supporting Information

Contents

1. Detailed information of Schemes 2 and 3 .................................................................S2

2. Detailed information of the reaction between 1b and BPO ........................................S3

3. Copies of LC-HRMS and 1H-NMR spectra for the reaction system in the synthesis of cyclobrassinin .................................................................................................................S5

4. Copy of 1H-NMR spectrum for the reaction in the synthesis of 1a and BPO ....................S6

5. Copies of 1H and 13C NMR spectra of dithiocarbamates 1 ..............................................S7

6. Copies of 1H and 13C-NMR spectra of cyclobrassinin and its analogs 2 ........................S15
1. Detailed information of Schemes 2 and 3

**Scheme 2.** Synthesis of brassinin (1a) and its analogues (1b–1d). Reagents and condition: (a) Method A: TsCl (for 4b) or MeI (for 4c), TBAB (0.1 equiv), NaOH (50% aq)/PhH = 1:1, 4 h; Method B: BnBr (1.1 equiv), Cs$_2$CO$_3$ (1.1 equiv), dry CH$_3$CN reflux 2 h. (b) NH$_2$OH.HCl (1.5 equiv), Na$_2$CO$_3$ (0.75 equiv), EtOH/H$_2$O = 10:1, r.t. 30 min. (c) NaBH$_4$ (7.0 equiv), NiCl$_2$.6H$_2$O (1.1 equiv), 0°C, 5–10 min. (d) H$_2$ (g), 5% Pd/C, MeOH/H$_2$O = 15:1, overnight. (e) CS$_2$ (3.0 equiv.), Et$_3$N (3.0 equiv), Mel (1.1 equiv), 0°C to r.t. 1–3 h.

**Scheme 3.** Synthesis of dithiocarbamates 1e–1h from L- indole-3-carbaldehyde. Reagents and condition: (a) SOCl$_2$ (2.2 equiv), MeOH, 0°C then reflux overnight. (b) Na$_2$CO$_3$ (0.6 equiv), MeOH/H$_2$O = 10:1, 0°C, then Et$_3$N (2.0 equiv), Mel (2.0 equiv) or BnCl (1.05 equiv) or n-PrBr (2.0 equiv), 0°C to r.t. (traced by TLC). (c) PhSH (1.5 equiv), Et$_3$N (1.0 equiv), dry PhMe, reflux 8 h.
2. Detailed information of the reaction of 1b with BPO

The reaction procedure: Under the nitrogen protection, dithiocarbamate 1b (117.2 mg, 0.3 mmol) and benzoyl peroxide [109 mg, 0.45 mmol was dissolved in 1,2-dichloroethane (1.5 mL). The reaction mixture vessel was put into a pre-heated oil bath to reflux for 2 h. After cooling to room temperature, the reaction system was washed with saturated NaHCO$_3$ aqueous solution (2 mL) to remove benzoic acid. The aqueous phase was extracted with 1,2-dichloroethane (2 × 9 mL) and then dried over anhydrous Na$_2$SO$_4$. We then analysed the reaction system through GC-MS, LC-MS and $^1$H NMR analyses.

The major products are listed below (Scheme 1S):

![Scheme S1. The reaction of 1b with BPO](image)

Although we didn’t obtain the desired cyclobrassinin derivatice 2b (0%), instead, an interest spirobrassinin derivative 11 was detected in both HRMS and $^1$H NMR albeit with very low yield. We tried our best to isolated and purified, but finally failed not only for the low yield, but the other impurities with silimar polarity. The ‘purest’ $^1$H NMR is shown below (Figure S1): There are 2 pairs of doublets from 3.7 to 4.6 ppm with coupling constant of 15.3 Hz, identifying that a spirobrassinin was generated.

![Figure S1 $^1$H NMR of 11 (not pure)](image)
LC-HRMS was then measured to further identify the structure (Figure S2). The calculated ion for [M+H]$^+$ of 11 is 511.0814, and the found are 511.0816 and 511.0823, respectively, at 10.16 and 10.26 min (two pairs of diastereomers), perfectly matched the structure.

The reaction process is briefly listed in Scheme S2. After abstracting a hydrogen by BPO, 1b generates a radical intermediate int-1. There are two possible way for int-1. The one is the β-cleavage of C-S bond to afford 8b (route a), and the other is the thiyl-radical-mediated 5-exo-trig cyclization to afford int-2 (route b), which then abstracts a benzoyloxy radical to obtain the desired spirobrassinin derivative 11. Besides that, int-2 can also undergo a β-cleavage of C-S bond to lose a tosyl radical to afford the cyclic imine 10.

**Scheme S2** The reaction process for the formation of 8 and 11
3. Copies of LC-HRMS and 'H-NMR spectra for the reaction system in the synthesis of cyclobrassinin

LC-HRMS system (ESI positive)

5.97 min:

6.76 min to 8.21 min: there are several peaks containing m/z 235 as the base peaks in LC, which might be the intermediate G (Scheme 4).
4. Copy of $^1$H-NMR spectrum for the reaction of 1a and BPO (after washing with saturated aqueous Na$_2$CO$_3$ to remove benzoic acid)
5. Copies of $^1$H and $^{13}$C-NMR spectra of dithiocarbamates 1

$^1$H NMR (400 MHz, CDCl$_3$) of 1a

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 1a
$^1$H NMR (400 MHz, CDCl$_3$) of 1b

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 1b
$^1$H NMR (400 MHz, CDCl$_3$) of 1c

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 1c
$^1$H NMR (400 MHz, CDCl$_3$) of 1d

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 1d
$^1$H NMR (400 MHz, CDCl$_3$) of 1e

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 1e
$^1$H NMR (400 MHz, CDCl$_3$) of 1f

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 1f
$^1$H NMR (400 MHz, CDCl$_3$) of $1g$

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of $1g$
$^1$H NMR (400 MHz, CDCl$_3$) of $1h$

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of $1h$
6. Copies of $^1\text{H}$ and $^{13}\text{C}$-NMR spectra of cyclobrassinin and its analogs 2

$^1\text{H}$ NMR (400 MHz, DMSO-$d_6$) of 2a

$^{13}\text{C}$ NMR (100.6 MHz, DMSO-$d_6$) of 2a
$^1$H NMR (400 MHz, CDCl$_3$) of 2c

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 2c
$^1$H NMR (400 MHz, CDCl$_3$) of 2d

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 2d
$^1$H NMR (400 MHz, CDCl$_3$) of 2e

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 2e
$^1$H NMR (400 MHz, CDCl$_3$) of 2f

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 2f
$^1$H NMR (400 MHz, CDCl$_3$) of 2g

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 2g
$^1$H NMR (400 MHz, CDCl$_3$) of 2h

![NMR Spectrum](image)

$^{13}$C NMR (100.6 MHz, CDCl$_3$) of 2h

![NMR Spectrum](image)