Supporting Information

Palladium immobilized on in situ cross-linked chitosan superfine fibers for catalytic application in the aqueous medium

Lulu Liang, a Li Nie, a Minjuan Jiang, a Fusheng Bie, b Linjun Shao, *, a Chenze Qi, a

X. Man Zhang, b Xuejing Liu, *, b

a Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Zhejiang Province 312000, People’s Republic of China, and b College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang, Shandong, 277160, China

*Address correspondence to Linjun Shao (shaolinjun@usx.edu.cn)
Figure S1. SEM images of the CS/PEO fiber mats with 10 wt.% of IA loading (A, B) and CS/PEO/IA fiber mats with 30 wt.% of IA loading (C, D) before and after submerging in 50 wt.% aqueous acetic acid for 24 hrs.
Figure S2. X-ray photoelectron spectra (XPS) of Pd-CS/PEO/IA catalyst before and after reduction.
Figure S3. SEM image of the recovered Pd-CS/PEO/IA catalyst.
Figure S4. 1H NMR spectrum of (E)-n-butyl cinnamate.
Figure S5. 1H NMR spectrum of (E)-n-butyl 3-(4-fluorophenyl)acrylate.
Figure S6. 1H NMR spectrum of (E)-butyl 3-(4-bromophenyl)acrylate.
Figure S7. 1H NMR spectrum of (E)-butyl 3-(4-chlorophenyl)acrylate.
Figure S8. 1H NMR spectrum of (E)-n-butyl 3-p-tolylacrylate.
Figure S9. 1H NMR spectrum of (E)-n-butyl 3-o-tolylacrylate.
Figure S10. 1H NMR spectrum of (E)-methyl cinnamate.
Figure S11. 1H NMR spectrum of (E)-1,2-diphenylethene.