Li$_2$S-embedded Copper Metal-Organic Framework Cathode with Superior Electrochemical Performance for Li-S Batteries

Yan Feng,*1 Yuliang Zhang,1 Guixiang Du,1 Jingbo Zhang,1 Miao Liu,2,3 and Xiaohui Qu,*2,4

1 Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China

2 Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China

4 College of Engineering Research, University of California, Berkeley, California 94720, United States

*Corresponding Authors: hxxyfy@tjnu.edu.cn (Y.F.); xqu@lbl.gov (X. Q.)
Figure S1. XRD patterns of pristine CuMOF before and after 155 °C heating.
Figure S2. The specific capacity-potential curves of the CuMOF1S1 (a) and CuMOF1S3 (b) at 1st, 10th, 20th, 50th and 100th cycle.
Figure S3. Optimized structure of the pristine CuMOF by linear scaling DFT.
Figure S4. Cycle performance of pristine CuMOF (without S) cathode at a charge/discharge current density of 200 mAh g⁻¹.