Supporting Information for

Fabrication of a novel electrochemical sensor for determination of water in some organic solvents based on naphthalene conducting polymers

Safoura Bakhtiari Haft Langa, Elmira Azizib, Jalal Arjomandib,\ast, Davood Nematollahib and Ahmad Reza Massaha,

aDepartment of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan 86145-311, Iran

bFaculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178, Iran

![Graph A](image1.png)

![Graph B](image2.png)

![Graph C](image3.png)

![Graph D](image4.png)

\[R^2 = 0.9774 \]

\[R^2 = 0.9855 \]
Fig. 1S Scan rate and square root of scan rates dependency of the current for (A, B) PDAN, (C, D) PDHN, (E, F) PDAN/TiO$_2$ and (G, H) P(DAN-co-DHN) films

Fig. 2S FT-IR spectra of PDAN (A), PDHN (B), PDAN/TiO$_2$ (C) and P(DAN-co-DHN) (D) films
Fig. 3S Cycle number dependency of the current of PDAN and PDAN/TiO$_2$ electrodes recorded for the ACN, EtOH and MeOH solutions
Fig. 4S Response potential dependency of the current of PDAN and PDAN/TiO₂ electrodes recorded for the ACN, EtOH and MeOH solutions
Fig. 5S Response time dependency of the current of PDAN and PDAN/TiO₂ electrodes recorded for the ACN, EtOH and MeOH solutions
I/µA vs Time (sec)

Panel A

Panel B
Fig. 6S The response time of the Au/PDHN electrode to changes in the water content of (A) ACN, (B) EtOH and (C) MeOH solutions under optimizes conditions. (Inset): Calibration plots for determining water content in solutions.
Fig. 7S The response time of the Au/P(DAN-co-PDHN) electrode to changes in the water content of (A) ACN, (B) EtOH and (C) MeOH solutions under optimizes conditions. (Inset): Calibration plots for determining water content in solutions.