Modulating magnetization dynamics of four phenoxo-O bridged Dy$_2$ complexes based on schiff base derived from 8-hydroxyquinoline

Dong-Fang Wu,a Hai-Yun Shen,a Xiao-Ya Chu,a Wen-Ju Chang,a Li-Hua Zhao,c Yao-Yao Duan,a Huan-Huan Chen,a Jian-Zhong Cui*a,b and Hong-Ling Gao*a,b

List of Contents

Supplementary Experimental section

Table S1-S4 The selected bond lengths (Å) and angles (°) for complexes 1-4.
Table S5 The continuous symmetry measurement value calculated by SHAPE 2.0 for complexes 1-4.
Table S6-S9 Hydrogen Bonds in complexes 1-4.

Scheme S1 The synthesis of the H$_2$L ligand.

Fig. S1 1H NMR spectrum (400 MHz, d$_6$-DMSO) of H$_2$L.

Fig. S2 Molecular structure and coordination polyhedrons for the DyIII ions in complex 2.

Fig. S3-S6 2D supramolecular plane of complexes 1-4.

Fig. S7 PXRD patterns of complexes 1-4.

Fig. S8 TGA curves of complexes 1-4.

Fig. S9 The UV-vis absorption spectra of Dy(bfa)$_3$·2H$_2$O, Dy(TTA)$_3$·2H$_2$O, Dy(acac)$_3$·2H$_2$O, Dy(PhCOO)$_3$·2H$_2$O, the ligand H$_2$L, and complexes 1–4.

Fig. S10 Plot of the reduced magnetization M versus H/T for 1 at different temperatures.

Fig. S11 Plots of the temperature-dependent ac susceptibility of 2 (in-phase (a) and out-of-phase (b)), 3 (in-phase (c) and out-of-phase (d)) and 4 (in-phase (e) and out-of-phase (f)), in a zero static field and an oscillating field of 3 Oe.

aDepartment of Chemistry, Tianjin University, Tianjin, 300354, China.
*Corresponding authors, E-mail: cuijianzhong@tju.edu.cn, ghl@tju.edu.cn.
bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China.
cRenai College of Tianjin University, Tianjin, 301636, China.
Scheme S1 The synthesis of the H$_2$L ligand.

![Scheme S1](image)

Table S1 The selected bond lengths (Å) and angles (°) for 1.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy(1)-O(1) #1</td>
<td>2.370(2)</td>
<td>Dy(1)-O(3)</td>
</tr>
<tr>
<td>Dy(1)-O(1)</td>
<td>2.348(3)</td>
<td>Dy(1)-O(4)</td>
</tr>
<tr>
<td>Dy(1)-O(2)</td>
<td>2.325(3)</td>
<td>Dy(1)-O(5)</td>
</tr>
<tr>
<td>Dy(1)-N(1)</td>
<td>2.465(3)</td>
<td>Dy(1)-N(2)</td>
</tr>
<tr>
<td>Dy(1)-- Dy(1) #1</td>
<td>3.822(3)</td>
<td></td>
</tr>
<tr>
<td>O(1)--Dy(1)-Dy(1) #1</td>
<td>36.08(6)</td>
<td>O(1)--Dy(1)-N(1)</td>
</tr>
<tr>
<td>O(1)--Dy(1)-O(1) #1</td>
<td>35.70(6)</td>
<td>O(1)--Dy(1)-N(2)</td>
</tr>
<tr>
<td>O(1)--Dy(1)-N(2)</td>
<td>71.78(1)</td>
<td>O(1)--Dy(1)-N(2)</td>
</tr>
<tr>
<td>O(2)--Dy(1)-O(1) #1</td>
<td>99.31(9)</td>
<td>O(2)--Dy(1)-O(1)</td>
</tr>
<tr>
<td>O(2)--Dy(1)-O(3)</td>
<td>76.70(1)</td>
<td>O(2)--Dy(1)-O(4)</td>
</tr>
<tr>
<td>O(2)--Dy(1)-N(1)</td>
<td>125.82(1)</td>
<td>O(2)--Dy(1)-N(2)</td>
</tr>
<tr>
<td>O(2)--Dy(1)-N(5)</td>
<td>86.24(1)</td>
<td>O(3)--Dy(1)-Dy(1) #1</td>
</tr>
<tr>
<td>O(3)--Dy(1)-O(1)</td>
<td>91.23(9)</td>
<td>O(3)--Dy(1)-O(1) #1</td>
</tr>
<tr>
<td>O(3)--Dy(1)-N(1)</td>
<td>137.01(1)</td>
<td>O(3)--Dy(1)-N(2)</td>
</tr>
<tr>
<td>O(4)--Dy(1)-Dy(1) #1</td>
<td>123.58(8)</td>
<td>O(4)--Dy(1)-O(1) #1</td>
</tr>
<tr>
<td>O(4)--Dy(1)-O(1)</td>
<td>95.85(1)</td>
<td>O(4)--Dy(1)-O(3)</td>
</tr>
<tr>
<td>O(4)--Dy(1)-N(1)</td>
<td>73.73(1)</td>
<td>O(4)--Dy(1)-N(2)</td>
</tr>
<tr>
<td>O(4)--Dy(1)-O(5)</td>
<td>143.97(1)</td>
<td>N(1)--Dy(1)-Dy(1) #1</td>
</tr>
<tr>
<td>N(1)--Dy(1)-N(2)</td>
<td>63.26(1)</td>
<td>N(2)--Dy(1)-Dy(1) #1</td>
</tr>
<tr>
<td>O(5)--Dy(1)-Dy(1) #1</td>
<td>86.13(8)</td>
<td>O(5)--Dy(1)-O(1)</td>
</tr>
<tr>
<td>O(5)--Dy(1)-O(1)</td>
<td>73.71(1)</td>
<td>O(5)--Dy(1)-O(3)</td>
</tr>
<tr>
<td>O(5)--Dy(1)-N(1)</td>
<td>83.15(1)</td>
<td>O(5)--Dy(1)-N(2)</td>
</tr>
<tr>
<td>Dy(1)--O(1)--Dy(1) #1</td>
<td>108.22(1)</td>
<td>N(3)--N(2)--Dy(1)</td>
</tr>
</tbody>
</table>

The symmetry code: #1 = x+1, −y, −z+1.
Table S2 The selected bond lengths (Å) and angles (°) for 2.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy(1)-O(5)</td>
<td>2.336(2)</td>
</tr>
<tr>
<td>Dy(1)-O(4)</td>
<td>2.341(2)</td>
</tr>
<tr>
<td>Dy(1)-O(1)</td>
<td>2.3494(2)</td>
</tr>
<tr>
<td>Dy(1)-N(1)</td>
<td>2.479(2)</td>
</tr>
<tr>
<td>O(1)-Dy(1) #1</td>
<td>2.3654(2)</td>
</tr>
<tr>
<td>O(5)-Dy(1)-O(2)</td>
<td>84.32(8)</td>
</tr>
<tr>
<td>O(5)-Dy(1)-O(4)</td>
<td>143.80(8)</td>
</tr>
<tr>
<td>O(5)-Dy(1)-O(3)</td>
<td>137.69(8)</td>
</tr>
<tr>
<td>O(4)-Dy(1)-O(3)</td>
<td>71.84(8)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-O(1)</td>
<td>168.07(7)</td>
</tr>
<tr>
<td>O(3)-Dy(1)-O(1)</td>
<td>91.71(7)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-O(1) #1</td>
<td>101.18(7)</td>
</tr>
<tr>
<td>O(3)-Dy(1)-O(1) #1</td>
<td>72.89(7)</td>
</tr>
<tr>
<td>O(5)-Dy(1)-N(1)</td>
<td>85.57(8)</td>
</tr>
<tr>
<td>O(4)-Dy(1)-N(1)</td>
<td>74.13(8)</td>
</tr>
<tr>
<td>O(1)-Dy(1)-N(1)</td>
<td>66.46(7)</td>
</tr>
<tr>
<td>O(5)-Dy(1)-N(2)</td>
<td>74.28(8)</td>
</tr>
<tr>
<td>O(4)-Dy(1)-N(2)</td>
<td>69.84(8)</td>
</tr>
<tr>
<td>O(1)-Dy(1)-N(2)</td>
<td>129.23(7)</td>
</tr>
<tr>
<td>N(1)-Dy(1)-N(2)</td>
<td>62.83(8)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-Dy(1) #1</td>
<td>135.50(5)</td>
</tr>
<tr>
<td>O(3)-Dy(1)-Dy(1) #1</td>
<td>80.68(6)</td>
</tr>
<tr>
<td>O(1) #1-Dy(1)-Dy(1) #1</td>
<td>34.78(5)</td>
</tr>
<tr>
<td>N(2)-Dy(1)-Dy(1) #1</td>
<td>152.39(6)</td>
</tr>
</tbody>
</table>

The symmetry code: #1 –x, -y, -z+2.

Table S3 The selected bond lengths (Å) and angles (°) for 3.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy(1)-O(2)</td>
<td>2.301(3)</td>
</tr>
<tr>
<td>Dy(1)-O(3)</td>
<td>2.368(3)</td>
</tr>
<tr>
<td>Dy(1)-O(1) #1</td>
<td>2.389(3)</td>
</tr>
<tr>
<td>Dy(1)-N(1)</td>
<td>2.444(3)</td>
</tr>
<tr>
<td>Dy(1)-Dy(1) #1</td>
<td>3.855 (5)</td>
</tr>
<tr>
<td>O(1)-Dy(1) #1</td>
<td>2.389(3)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-O(3)</td>
<td>87.39(1)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-O(1)</td>
<td>164.19(1)</td>
</tr>
<tr>
<td>O(3)-Dy(1)-O(1)</td>
<td>104.72(1)</td>
</tr>
<tr>
<td>O(4)-Dy(1)-O(1) #1</td>
<td>76.55(1)</td>
</tr>
<tr>
<td>O(1)-Dy(1)-O(1) #1</td>
<td>71.96(1)</td>
</tr>
<tr>
<td>O(4)-Dy(1)-O(5)</td>
<td>148.27(1)</td>
</tr>
<tr>
<td>O(1)-Dy(1)-O(5)</td>
<td>84.21(1)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-N(1)</td>
<td>127.25(1)</td>
</tr>
<tr>
<td>O(3)-Dy(1)-N(1)</td>
<td>73.44(1)</td>
</tr>
<tr>
<td>O(1) #1-Dy(1)-N(1)</td>
<td>128.67(1)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-N(2)</td>
<td>63.71(1)</td>
</tr>
<tr>
<td>O(3)-Dy(1)-N(2)</td>
<td>70.27(1)</td>
</tr>
<tr>
<td>O(1) #1-Dy(1)-N(2)</td>
<td>136.75(1)</td>
</tr>
<tr>
<td>N(1)-Dy(1)-N(2)</td>
<td>63.59(1)</td>
</tr>
<tr>
<td>O(4)-Dy(1)-Dy(1) #1</td>
<td>76.68(8)</td>
</tr>
<tr>
<td>O(1)-Dy(1)-Dy(1) #1</td>
<td>36.11(7)</td>
</tr>
<tr>
<td>O(5)-Dy(1)-Dy(1) #1</td>
<td>75.33(8)</td>
</tr>
<tr>
<td>N(2)-Dy(1)-Dy(1) #1</td>
<td>147.61(8)</td>
</tr>
</tbody>
</table>

The symmetry code: #1 –x, y, -z+1/2
Table S4 The selected bond lengths (Å) and angles (°) for 4.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy(1)-O(1) #1</td>
<td>2.351(3)</td>
<td>Dy(1)-O(1)</td>
<td>2.379(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy(1)-O(2)</td>
<td>2.316(3)</td>
<td>Dy(1)-O(3)</td>
<td>2.435(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy(1)-O(4)</td>
<td>2.407(3)</td>
<td>Dy(1)-O(5)</td>
<td>2.387(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy(1)-N(1)</td>
<td>2.448(3)</td>
<td>Dy(1)-N(2)</td>
<td>2.502(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy(1)-... Dy(1) #1</td>
<td>3.807(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-#1-Dy(1)-Dy(1) #1</td>
<td>36.65(6)</td>
<td>O(1)-Dy(1)-Dy(1) #1</td>
<td>36.15(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-#1-Dy(1)-O(1)</td>
<td>72.80(1)</td>
<td>O(1)-#1-Dy(1)-O(3)</td>
<td>75.78(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-#1-Dy(1)-O(3)</td>
<td>82.32(1)</td>
<td>O(1)-#1-Dy(1)-O(4)</td>
<td>129.06(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-#1-Dy(1)-O(4)</td>
<td>104.90(1)</td>
<td>O(1)-#1-Dy(1)-O(5)</td>
<td>80.07(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-#1-Dy(1)-O(5)</td>
<td>84.12(1)</td>
<td>O(1)-#1-Dy(1)-N(1)</td>
<td>137.15(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-#1-Dy(1)-N(1)</td>
<td>67.05(1)</td>
<td>O(1)-#1-Dy(1)-N(2)</td>
<td>129.25(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-#1-Dy(1)-N(2)</td>
<td>147.80(1)</td>
<td>O(2)-#1-Dy(1)-Dy(1) #1</td>
<td>128.78(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-#1-Dy(1)-O(1)</td>
<td>164.67(1)</td>
<td>O(2)-Dy(1)-O(1) #1</td>
<td>92.20(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-#1-Dy(1)-O(3)</td>
<td>97.35(1)</td>
<td>O(2)-#1-Dy(1)-O(4)</td>
<td>86.88(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-#1-Dy(1)-O(5)</td>
<td>90.28(1)</td>
<td>O(2)-#1-Dy(1)-N(1)</td>
<td>126.28(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-#1-Dy(1)-N(2)</td>
<td>63.13(1)</td>
<td>O(3)-#1-Dy(1)-Dy(1) #1</td>
<td>76.40(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)-#1-Dy(1)-N(1)</td>
<td>112.00(1)</td>
<td>O(3)-#1-Dy(1)-N(2)</td>
<td>125.00(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-#1-Dy(1)-Dy(1) #1</td>
<td>123.35(7)</td>
<td>O(4)-#1-Dy(1)-O(3)</td>
<td>53.97(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-#1-Dy(1)-N(1)</td>
<td>76.88(1)</td>
<td>O(4)-#1-Dy(1)-N(2)</td>
<td>73.08(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)-#1-Dy(1)-Dy(1) #1</td>
<td>80.18(7)</td>
<td>O(5)-#1-Dy(1)-O(3)</td>
<td>154.90(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)-#1-Dy(1)-O(4)</td>
<td>150.80(1)</td>
<td>O(5)-#1-Dy(1)-N(1)</td>
<td>81.54(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)-#1-Dy(1)-N(2)</td>
<td>79.73(1)</td>
<td>N(1)-#1-Dy(1)-Dy(1) #1</td>
<td>102.07(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-#1-Dy(1)-N(2)</td>
<td>63.16(1)</td>
<td>N(2)-#1-Dy(1)-Dy(1) #1</td>
<td>156.63(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy(1)-#1-O(1)-Dy(1)</td>
<td>107.20(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The symmetry code: #1 –x, -y+1, -z.

Table S5 The continuous symmetry measurement value calculated by SHAPE 2.0 for complexes 1-4.

<table>
<thead>
<tr>
<th>complex</th>
<th>D_{2d}SAPR</th>
<th>D_{2d}TDD</th>
<th>C_{2v}JBTPR</th>
<th>C_{2v}BTPR</th>
<th>D_{2d}JSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.879</td>
<td>2.485</td>
<td>3.134</td>
<td>2.730</td>
<td>3.413</td>
</tr>
<tr>
<td>2</td>
<td>4.360</td>
<td>2.884</td>
<td>3.451</td>
<td>3.040</td>
<td>3.748</td>
</tr>
<tr>
<td>3</td>
<td>2.921</td>
<td>1.574</td>
<td>2.445</td>
<td>1.976</td>
<td>3.154</td>
</tr>
<tr>
<td>4</td>
<td>4.560</td>
<td>3.469</td>
<td>3.471</td>
<td>3.040</td>
<td>4.725</td>
</tr>
</tbody>
</table>

Table S6 Hydrogen Bonds in complex 1.

<table>
<thead>
<tr>
<th>D-H</th>
<th>d(D-H) (Å)</th>
<th>d(H--A) (Å)</th>
<th>\angleDHA (°)</th>
<th>d(D--A) (Å)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O7-H7A</td>
<td>0.840</td>
<td>1.923</td>
<td>158.39</td>
<td>2.722</td>
<td>N4 [x-1, y, z]</td>
</tr>
<tr>
<td>O5-H5A</td>
<td>0.850</td>
<td>1.862</td>
<td>166.40</td>
<td>2.696</td>
<td>O6 [-x+1, -y+1, -z+1]</td>
</tr>
<tr>
<td>O5-H5B</td>
<td>0.849</td>
<td>1.853</td>
<td>154.76</td>
<td>2.646</td>
<td>O7 [x+1/2, -y+1/2, z-1/2]</td>
</tr>
<tr>
<td>O6-H6</td>
<td>0.840</td>
<td>1.907</td>
<td>173.27</td>
<td>2.743</td>
<td>N3 [x-1, y+1, z]</td>
</tr>
</tbody>
</table>
Table S7 Hydrogen Bonds in complex 2.

<table>
<thead>
<tr>
<th>D-H</th>
<th>d(D-H) (Å)</th>
<th>d(H··A) (Å)</th>
<th>(\angle \text{DHA}) (°)</th>
<th>d(D··A) (Å)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5-H5A</td>
<td>0.858</td>
<td>1.836</td>
<td>165.69</td>
<td>2.676</td>
<td>O6 [-x+1, -y+1, -z+2]</td>
</tr>
<tr>
<td>O5-H5B</td>
<td>0.863</td>
<td>1.845</td>
<td>159.76</td>
<td>2.672</td>
<td>O7 [x, y, z+1]</td>
</tr>
<tr>
<td>O6-H6</td>
<td>0.840</td>
<td>1.907</td>
<td>169.91</td>
<td>2.738</td>
<td>N3 [x, y+1, z]</td>
</tr>
<tr>
<td>O7-H7A</td>
<td>0.840</td>
<td>1.933</td>
<td>161.64</td>
<td>2.743</td>
<td>N4 [x-1/2, -y+1/2, z-1/2]</td>
</tr>
</tbody>
</table>

Table S8 Hydrogen Bonds in complex 3.

<table>
<thead>
<tr>
<th>D-H</th>
<th>d(D-H) (Å)</th>
<th>d(H··A) (Å)</th>
<th>(\angle \text{DHA}) (°)</th>
<th>d(D··A) (Å)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5-H5A</td>
<td>0.853</td>
<td>1.975</td>
<td>172.13</td>
<td>2.822</td>
<td>N4 [-x+3/2, y+1/2, -z+1/2]</td>
</tr>
<tr>
<td>O5-H5B</td>
<td>0.850</td>
<td>1.953</td>
<td>163.58</td>
<td>2.779</td>
<td>O4 [-x+3/2, -y+1/2, -z+1]</td>
</tr>
</tbody>
</table>

Table S9 Hydrogen Bonds in complex 4.

<table>
<thead>
<tr>
<th>D-H</th>
<th>d(D-H) (Å)</th>
<th>d(H··A) (Å)</th>
<th>(\angle \text{DHA}) (°)</th>
<th>d(D··A) (Å)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5-H5A</td>
<td>0.854</td>
<td>2.018</td>
<td>165.36</td>
<td>2.852</td>
<td>O3 [-x, -y+1, -z]</td>
</tr>
<tr>
<td>O5-H5B</td>
<td>0.850</td>
<td>1.962</td>
<td>162.65</td>
<td>2.785</td>
<td>N4 [x+1/2, -y+1/2, -z]</td>
</tr>
</tbody>
</table>

Fig. S1 \(^1\)H NMR spectrum (400 MHz, \(d_6\)-DMSO) of H\(_2\)L.
Fig. S2 (a) Molecular structure for 2 (all hydrogen atoms and the lattice methanol molecules have been omitted for clarity); (b) coordination polyhedrons for the DyIII ions in complex 2.

Fig. S3 2D supramolecular plane of complex 1 (all bfa$^-$ ligands and all hydrogen atoms of the H$_2$L ligands are omitted for clarity). The red circle highlights where two lattice methanol molecules join three Dy$_2$ units.

Fig. S4 2D supramolecular plane of complex 2 (all TTA ligands and all hydrogen atoms of the H$_3$L ligands are omitted for clarity). The red circle highlights where two methanol molecules join three Dy$_2$ units.
Fig. S5 2D supramolecular plane of complex 3 (all acac⁻ ligands and all hydrogen atoms of the H₂L ligands are omitted for clarity). The red circle highlights where a coordinated water molecule joins two Dy₂ units.

Fig. S6 2D supramolecular plane of complex 4 (all PhCOO⁻ ligands and all hydrogen atoms of the H₂L ligands are omitted for clarity). The red circle highlights where a methanol molecule joins two Dy₂ units. The red circle highlights where a coordinated water molecule joins two Dy₂ units.
Fig. S7 PXRD patterns of complexes 1(a), 2(b), 3(c) and 4(d).

Fig. S8 TGA curves of complexes 1(a), 2(b), 3(c), 4(d).
Fig. S9 The UV-vis absorption spectra of Dy(bfa)$_3$·2H$_2$O, Dy(TTA)$_3$·2H$_2$O, Dy(acac)$_3$·2H$_2$O, Dy(PhCOO)$_3$·2H$_2$O, the ligand H$_2$L, and complexes 1–4.

Magnetic properties

The field dependencies of magnetization measurements were carried out in the range of 0-80 kOe at 2-7 K for 1 (Fig. S10), with M values rapidly increasing at low magnetic fields. The magnetization of 1 increases steadily with the high applied fields and reaches 14.33 $N\beta$ at 2 K and 80 kOe, which is lower than the calculated value of 20.00 $N\beta$ for two DyIII ($J = 15/2$, $g = 4/3$), indicating unsaturation. This is most likely due to the crystal field effect on the DyIII ion that removes the 16-fold degeneracy of the $^6H_{15/2}$ ground state.1,2 The M-H/T curves at different temperatures are non-overlapping. These phenomena can be attributed to one or a combination of the following two features: (i) strong anisotropy of DyIII ions; (ii) DyIII ions being at a low exited state.3
Fig. S10 Plot of the reduced magnetization M versus H/T for 1 at different temperatures.

Alternating current (ac) magnetism
Note and references