Supporting Information for

Rapid Determination and Conversion Study of
5-Hydroxymethylfurfural and Its Derivatives in Glucose Injection

Cheng Wanga, Yajing Houa, Yuanyuan Lina, Yitong Xiea, Di Weia, Nan Zhoub, Huaizhen Hea*

a School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
b Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, China

*E-mail: hehuaizhen@mai.xjtu.edu.cn; Tel: +86-29-82657740, Fax: +86-29-82655451
Figure S1. Comparison of typical IR spectra for Compounds I-III.

Chemical Formula: C₈H₈O₃
Exact Mass: 126.03
Molecular Weight: 126.11
m/z: 126.03 (100.0%), 127.04 (6.5%)
Elemental Analysis: C, 57.14; H, 4.80; O, 38.06

Figure S2. GC-MS data of compound I

Chemical Formula: C₁₂H₁₀O₅
Exact Mass: 234.05
Molecular Weight: 234.21
m/z: 234.05 (100.0%), 236.06 (13.0%), 238.06 (1.0%)
Elemental Analysis: C, 61.54; H, 4.30; O, 34.16

Figure S3. ESI-MS data of compound II
Figure S4. ESI-HRMS data of compound III

Figure S5. 1H NMR of compound I
Figure S6. 13C NMR of compound I

Figure S7. 1H NMR of compound II
Figure S8. 13C NMR of compound II

Figure S9. 1H NMR of compound III
Figure S10. 13C NMR of compound III

Figure S11. HPLC for sample, control and standard (a: HPLC for glucose injection; b: HPLC for control; c: HPLC for standard compounds.)