Flexible yolk-shelled NiCo$_2$S$_4$ hollow spheres/RGO film electrodes for efficient supercapacitive energy storage

Yilin Wua, Ming Yana, Lin Sunb, Weidong Shib,*

aInstitute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

Corresponding Author*

E-mail: wuyilin@ujs.edu.cn; swd1978@ujs.edu.cn

Telephone Number: +86 0511-88790683; Fax: +86 0511-88791800
Formation of ball-in-ball hollow spheres.

As shown in Fig. S1., we develop a hydrothermal method to prepare uniform nickel cobalt glycerate (NiCo-glycerate) spheres as the precursor. A solution sulfidation process under solvothermal condition is then utilized to convert the NiCo-glycerate solid precursors into yolk-shelled NiCo$_2$S$_4$ hollow spheres. The whole formation process can be generally divided into two stages as schematically. At stage I, sulfide (S$^{2-}$) ions released from the decomposition of TAA at high temperature react with metal ions on the surface of NiCo-glycerate and produce NiCo-glycerate@NiCo$_2$S$_4$ core-shell structure. This sulfidation process can be described as an anion exchange reaction of the NiCo-glycerate. Further reaction between the inward diffused S$^{2-}$ ions and faster outward diffused metal cations supplies the growth of the NiCo$_2$S$_4$ shell and leads to a well-defined gap between the shell and the NiCo-glycerate core. When the reaction proceeds to certain degree, it will be more difficult for the metal cations to diffuse to the outer shell through the enlarged empty gap. Thus, a secondary NiCo$_2$S$_4$ shell would be formed on the remaining core as shown at stage II. On the completion of the anion exchange reaction, unique yolk-shelled NiCo$_2$S$_4$ hollow spheres are obtained at the end.

![Diagram](image)

Fig. S1. schematic illustration of the formation process of yolk-shelled NiCo$_2$S$_4$ hollow spheres
Fig. S2. Nitrogen adsorption and desorption isotherm of the NiCo$_2$S$_4$/2RGO composite (a), the pore size distribution curve (b).

Fig. S3. CV curves of AC at 2 mV/s (a); GCD of AC at 1 Ag$^{-1}$ (b).
Fig. S4. CV curves of as-prepared Ni foam sample at the scan rates of 2 mV/s.

<table>
<thead>
<tr>
<th>Materials</th>
<th>$^\text{a}C_{\text{max}}$</th>
<th>$^\text{b}T$</th>
<th>$^\text{c}C_{\text{m}}%_T$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCo$_2$S$_4$ nanoboxes</td>
<td>777.0 F g$^{-1}$ (4 A g$^{-1}$)</td>
<td>5000</td>
<td>75.0%</td>
<td>[45]</td>
</tr>
<tr>
<td>NiCo$_2$S$_4$ nanplates</td>
<td>437.0 F g$^{-1}$ (1 A g$^{-1}$)</td>
<td>1000</td>
<td>81.0%</td>
<td>[46]</td>
</tr>
<tr>
<td>NiCo$_2$S$_4$@graphene</td>
<td>1432.0 F g$^{-1}$ (1 A g$^{-1}$)</td>
<td>5000</td>
<td>84.3%</td>
<td>[47]</td>
</tr>
<tr>
<td>NiCo$_2$S$_4$@rGO@CNT</td>
<td>1242.5 F g$^{-1}$ (2 A g$^{-1}$)</td>
<td>2000</td>
<td>53.9%</td>
<td>[48]</td>
</tr>
<tr>
<td>NiCo$_2$S$_4$/2RGO films</td>
<td>1000.5 F g$^{-1}$ (1 A g$^{-1}$)</td>
<td>5000</td>
<td>80.5%</td>
<td>This work</td>
</tr>
</tbody>
</table>

$^\text{a}$C$_{\text{max}}$, maximum specific capacitance,

$^\text{b}T$, cycles of cycle life test,

$^\text{c}C_{\text{m}}\%_T$, retention rate of specific capacitance after cycle life test.