Naphthalimide-based Fluorescent Nanoprobes for the Detection of Saccharide

Zichun Qiao, Zhaoyang Chen, Shuo Zhang, Zepeng Cui, Zhuoran Xu, Weibing Zhang*, Junhong Qian*

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
E-mail: junhongqian@ecust.edu.cn
Tel: +86-21-64252331; Fax: +86-21-64233161

Supporting Information
Fig. S1 1H-NMR, 13C-NMR and HR-MS spectra of NP-A.
Fig. S2 1H-NMR, 13C-NMR and HR-MS spectra of NP-B.
Fig. S3 1H-NMR and HR-MS spectra of NP-C.
Fig. S4 The absorption (a) and emission (b) spectra of NP-B and SN-B; effect of fructose on the UV-vis spectra of probes NP-B (c) and SN-B (d).
Fig. S5 (a) Time-dependent emission spectra of SN-B in the presence of 100 mM fructose; and (b) the plots of fluorescence intensities as a function of time.
Fig. S6 Effects of other additives on the spectral responses of NP-B (a, c) and SN-B (b, d) toward fructose (a, b) and sorbitol (c, d). [NP-B] = 5 μM, [SN-B] = 0.5 mg/mL, [fructose] = [sorbitol] = 100 mM, [additive] = 100 mM.