Supporting Information

A highly specific and sensitive ratiometric fluorescent probe for carbon monoxide and its bioimaging applications

Zuokai Wang, a Zhuofan Geng, a Ziyang Zhao, a Wenlong Sheng, b Caiyun Liu, a* Xiaoyu Lv, a Qixia He, b* and Baocun Zhu a*

a School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, P. R. China.

b Qilu University of Technology (Shandong Academy of Sciences), Biology Institute of Shandong Academy of Sciences, 19 Keyuan Road, Lixia District, Jinan, 250014, Shandong Province, P. R. China.

*Corresponding author. Fax: +86-531-82767617; Tel.: +86-531-82767617

E-mail address: lcyzbc@163.com (B. Zhu), liucaiyun1982072@163.com (C. Liu), and heqiuaxia8008@163.com (Q. He)
Table of Contents

1. Determination of the detection limit
2. The NMR (\(^1\)H and \(^{13}\)C) spectra of probe \textbf{Ratio-CO}
3. Preparation of reactive oxygen species
4. The mechanism of probe \textbf{Ratio-CO} for detection of CO
5. References
1. Determination of the detection limit

The detection limit was calculated based on the fluorescence titration. The fluorescence spectra of free probe Ratio-CO were measured by five times and its standard deviation was obtained. To gain the slope, the fluorescence intensity ratio at 545 nm and 455 nm (F_{545}/F_{455}) were plotted as the increasing concentrations of CO. So the detection limit was calculated with the following equation (1):

\[
\text{Detection limit} = \frac{3\sigma}{k}
\]

Where σ is the standard deviation of blank measurement, k is the slope between the fluorescence intensities versus the concentrations of CO.

2. The NMR (1H and 13C) spectra of probe Ratio-CO

![Figure S1. The 1H NMR spectra of probe Ratio-CO](image)
3. Preparation of reactive oxygen species

Hydrogen peroxide (H₂O₂), sodium hypochlorite (NaOCl), and tert-butylhydroperoxide (TBHP) were diluted from the commercially available solution to 0.01 M in ultrapure water. Hydroxyl radical (·OH) and tert-butoxy radical (·O' Bu) were generated by reaction of 1 mM Fe²⁺ with 1 mM H₂O₂ or 1 mM TBHP respectively. Superoxide anion (O₂⁻) was prepared from KO₂ in DMSO. The concentration of H₂O₂ was determined from the absorbance at 240 nm (ε = 43.6 M⁻¹ cm⁻¹). The concentration of ·OCl was determined from the absorbance at 292 nm (ε = 350 M⁻¹ cm⁻¹).

4. The mechanism of probe Ratio-CO for detection of CO

When the hydroxyl group at the 4-site of 1,8-naphthalimide fluorophore was protected with allyl moiety, its electron-donating ability was suppressed.¹ While Pd²⁺ was reduced to Pd(0) by CO,²,³ and Pd(0) removed the allylic ether bond by the
Tsuji-Trost reaction. As a result, the hydroxyl group at the 4-site of 1,8-naphthalimide was released, leading to the generation of stronger intramolecular charge transfer (ICT) structure. Consequently, a large red-shifted fluorescence spectrum was obtained upon the addition of CO in the presence of Pd$^{2+}$.

Scheme S1. The recognition mechanism of probe Ratio-CO for detection of CO.

5. References

