Two isomers of a bis(diphenylphosphino)phosphinine, and the synthesis and reactivity of Ru arene / Cp* phosphinophosphinine complexes

Robert J. Newland, a Matthew P. Delve, a Richard L. Wingad b and Stephen M. Mansell *a

a Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. E-mail: s.mansell@hw.ac.uk.

b School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK.

Contents

Synthesis and crystal structure of 7Fe ..1
NMR/Mass Spectra/GC Traces ...3
Reactivity studies ..28
 Reaction of 1 with [{RuCl2(C6Me6)}2] and dried NH4PF6 ..28
 Reaction of 1 with [{RuCl2(C6Me6)}2] without any additional anions...29
 Reaction of 10 with water ..31

Synthesis and crystal structure of 7Fe

An ampoule was charged with 7 (100 mg, 0.13 mmol, 1 equiv.), anhydrous FeCl2 (17 mg, 0.13 mmol, 1 equiv.) and dry THF (10 cm³), sealed with a Teflon tap and heated to 70°C for 18 hours. All volatiles were removed under high vacuum and the resulting residue dissolved in dry dichloromethane (1 cm³). The solution was cannula filtered and layered with pet. ether (4 cm³), with yellow needles of the product produced over one week, which X-ray diffraction revealed to be 7.H2.O.FeCl2.HCl

31P{1H}-NMR (162 MHz, CDCl3): δ = 18.4 (bs).
Scheme S1. Reaction of 7 with FeCl$_2$ and trace HCl / H$_2$O (1 equivalent of each). Several potential resonance structures are given.

Figure S1. Molecular structure of 7Fe; thermal ellipsoids at 50% probability. All H-atoms have been removed for clarity except for those attached to N or P atoms.

Figure S2. 31P{1H} NMR spectrum of 7Fe
Figure S3. 1H NMR spectrum of 5

Figure S4. 31P{1H} NMR spectrum of 5
Figure S5. 13C(1H) NMR spectrum of 5
Figure S6. 13C$[^1]H$ NMR spectrum (aromatic region) of 5
Figure S7. MS (EI) of 5

Figure S8. 1H NMR spectrum of 6
Figure S9. 31P{^1}H NMR spectrum of 6

Figure S10. 31P{^1}H NMR spectrum (phosphinine region) of 6
Figure S11. 31P(1H) NMR spectrum (phosphine region) of 6
Figure S12. 13C(1H) NMR spectrum of 6
Figure S13. MS (EI) of 6

Figure S14. 1H NMR spectrum of 7
Figure S15. 31P(1H) NMR spectrum of 7

Figure S16. 31P(1H) NMR spectrum (phosphinine region) of 7
Figure S17. 31P(1H) NMR spectrum (phosphine region) of 7
Figure S18. 13C{¹H} NMR spectrum of 7
Figure S19. HRMS of 7
Figure S20. 31P{H} NMR spectrum of mixture of 2 & 8 (* = 2)
Figure S21. 1H NMR spectrum of 9.
Figure S22. 31P{1H} NMR spectrum of 9

Figure S23. 31P{1H} NMR spectrum ([PF$_6$] resonance) of 9
Figure S24. 19F NMR spectrum ([PF$_6$] resonance) of 9

Figure S25. HRMS of 9
Figure S26. 1H NMR spectrum of 10
Figure S27. 13C(1H) NMR spectrum of 10. Contains traces of petroleum ether.
Figure S28. $^{31}\text{P}[^1\text{H}]$ NMR spectrum of 10

Figure S29. $^{31}\text{P}[^1\text{H}]$ NMR spectrum (phosphinine region) of 10

Figure S30. $^{31}\text{P}[^1\text{H}]$ NMR spectrum (phosphine region) of 10
Figure S31. $^{29}\text{Si}[^1\text{H}]$ NMR spectrum of 10

Figure S32. HRMS of 10
Figure S33. 1H NMR spectrum of 11. * Contains silicone grease.
Figure S34. 31P(1H) NMR spectrum of 11

Figure S35. 29Si(1H) NMR spectrum of 11
Figure S36. HRMS of 11

Figure S37. 1H NMR spectrum of the transfer hydrogenation of benzophenone (20°C, 0.1 mol% 2, 24h: 70% yield)
Figure S38. 1H NMR spectrum of the transfer hydrogenation of benzophenone (82°C, 0.1 mol% 2, 4h: 95% yield)

Figure S39. 1H NMR spectrum of the transfer hydrogenation of 2-fluorobenzaldehyde (82°C, 1 mol% 2, 24h: 24% yield)
Figure S40. 1H NMR spectrum of the transfer hydrogenation of 4-methylcyclohexanone (82°C, 1 mol% Ru, 1h: 63% yield)

Figure S41. GC trace of the upgrading of ethanol and methanol to isobutanol (180°C, 0.1 mol% trans-[Ru(III)(dppm)]$_2$, 2h: 64.6% yield). This catalytic sample was analysed using a different method to the other samples: Method: oven temperature starts at 35 °C for 3.5 minutes, heat to 200 °C at 20 °C min$^{-1}$ then to 250 °C at 50 °C min$^{-1}$ then hold at 250 °C for 5 minutes. Flow rate 1.8 cm3 min$^{-1}$. n-Pentanol was used as a standard
Figure S42. GC trace of the upgrading of ethanol and methanol to isobutanol (180°C, 0.1 mol% 2, 2h: 38.1% yield). Hexadecane was used as a standard.

Figure S43. GC trace of the upgrading of ethanol and methanol to isobutanol (180°C, 0.1 mol% 9, 2h: 11.1% yield). Hexadecane was used as a standard.
Reactivity studies

Reaction of 1 with [{RuCl₂(C₆Me₆)}₂] and dried NH₄PF₆

Under a nitrogen atmosphere, a Schlenk flask was charged with 1 (20 mg, 0.06 mmol, 1 equiv.), [{RuCl₂(C₆Me₆)}₂] (18 mg, 0.03 mmol, 0.5 equiv) and NH₄PF₆ (9 mg, 0.06 mmol, 1 equiv.). Dry dichloromethane (2 cm³) was then added via syringe and the reaction stirred for two hours. All volatiles were then removed in vacuo before dry CDCl₃ (0.8 cm³) was added. The crude reaction mixture was then analysed by ³¹P{¹H} NMR spectroscopy.

Figure S44. ³¹P{¹H} NMR spectrum of the reaction of 1 with [{RuCl₂(C₆Me₆)}₂] and dry NH₄PF₆

Figure S45. ³¹P{¹H} NMR spectrum of the reaction of 1 with [{RuCl₂(C₆Me₆)}₂] and dry NH₄PF₆ (magnification of low frequency area). * = 9
Reaction of 1 with $\left[\{\text{RuCl}_2(\text{C}_6\text{Me}_6)\}_2\right]$ without any additional anions

An NMR tube was charged with 1 (20 mg, 0.06 mmol) and $\left[\{\text{RuCl}_2(\text{C}_6\text{Me}_6)\}_2\right]$ (18 mg, 0.03 mmol, 0.5 equiv), then an approx. 1:1 mixture of C_6D_6 : fluorobenzene (used to aid solubility of the Ru dimer) was added and the tube sealed with a J Young tap. The tube was heated to 90°C overnight and the contents analysed by $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy, which revealed formation of 2 as the major product.

Figure S46. $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of the reaction of 1 with $\left[\{\text{RuCl}_2(\text{C}_6\text{Me}_6)\}_2\right]$

Figure S47. $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of the reaction of 1 with $\left[\{\text{RuCl}_2(\text{C}_6\text{Me}_6)\}_2\right]$ (magnification of high frequency area).

* = 2

*
Figure S48. 31P$^{[1]H}$ NMR spectrum of the reaction of 1 with [[RuCl$_2$(C$_6$Me$_6$)$_2$]] (magnification of low frequency area). * = 2
Reaction of 10 with water
An NMR tube was charged with a solution of 10 (20 mg, 0.03 mmol) in dry THF-d₈ (0.6 cm³). Water (3 drops) was then added and the tube was then sealed with a J Young tap and thorough shaken. After an hour, the reaction was analysed by 31P{1H} NMR which revealed formation of mainly 11 as well as minor side products and unconsumed 10.

Figure S49. 31P{1H} NMR spectrum of the reaction of 10 with excess water

Figure S50. 31P{1H} NMR spectrum of the reaction of 10 with excess water (magnification of low frequency region).

* = 11