Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## **Supporting Information**

# Two isomers of a bis(diphenylphosphino)phosphinine, and the synthesis and reactivity of Ru arene / Cp\* phosphinophosphinine complexes

Robert J. Newland, <sup>a</sup> Matthew P. Delve, <sup>a</sup> Richard L. Wingad <sup>b</sup> and Stephen M. Mansell <sup>\*a</sup>

a Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. E-mail: s.mansell@hw.ac.uk.

b School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.

## Contents

| Synthesis and crystal structure of <b>7Fe</b>                                                                                             | 1  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----|
| NMR/Mass Spectra/GC Traces                                                                                                                | 3  |
| Reactivity studies                                                                                                                        | 28 |
| Reaction of <b>1</b> with [{RuCl <sub>2</sub> (C <sub>6</sub> Me <sub>6</sub> )} <sub>2</sub> ] and dried NH <sub>4</sub> PF <sub>6</sub> | 28 |
| Reaction of <b>1</b> with $[{RuCl_2(C_6Me_6)}_2]$ without any additional anions                                                           | 29 |
| Reaction of <b>10</b> with water                                                                                                          | 31 |

## Synthesis and crystal structure of 7Fe

An ampoule was charged with **7** (100 mg, 0.13 mmol, 1 equiv.), anhydrous FeCl<sub>2</sub> (17 mg, 0.13 mmol, 1 equiv.) and dry THF (10 cm<sup>3</sup>), sealed with a Teflon tap and heated to 70°C for 18 hours. All volatiles were removed under high vacuum and the resulting residue dissolved in dry dichloromethane (1 cm<sup>3</sup>). The solution was cannula filtered and layered with pet. ether (4 cm<sup>3</sup>), with yellow needles of the product produced over one week, which X-ray diffraction revealed to be **7**.H<sub>2</sub>O.FeCl<sub>2</sub>.HCl

### <sup>31</sup>P{<sup>1</sup>H}-NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ = 18.4 (bs).



**Scheme S1**. Reaction of **7** with  $FeCl_2$  and trace HCl /  $H_2O$  (1 equivalent of each). Several potential resonance structures are given.



**Figure S1**. Molecular structure of **7Fe**; thermal ellipsoids at 50% probability. All H-atoms have been removed for clarity except for those attached to N or P atoms.



Figure S2. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 7Fe







Figure S5. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 5



Figure S6.  $^{13}C{^{1}H}$  NMR spectrum (aromatic region) of 5







Figure S9. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 6







Figure S11. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (phosphine region) of 6



Figure S12. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 6







5

Figure S16. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (phosphinine region) of 7



Figure S17.  ${}^{31}P{}^{1}H$  NMR spectrum (phosphine region) of 7







Figure S19. HRMS of 7







Figure S21. <sup>1</sup>H NMR spectrum of 9.



Figure S23. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum ([PF<sub>6</sub>]<sup>-</sup> resonance) of 9







Figure S25. HRMS of 9











Figure S30. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (phosphine region) of **10** 







Figure S32. HRMS of 10



Figure S33. <sup>1</sup>H NMR spectrum of **11**. \* Contains silicone grease.



Figure S35. <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum of **11** 



Figure S36. HRMS of 11



Figure S37. <sup>1</sup>H NMR spectrum of the transfer hydrogenation of benzophenone (20°C, 0.1 mol% 2, 24h: 70% yield)



Figure S38. <sup>1</sup>H NMR spectrum of the transfer hydrogenation of benzophenone (82°C, 0.1 mol% 2, 4h: 95% yield)



**Figure S39.** <sup>1</sup>H NMR spectrum of the transfer hydrogenation of 2-fluorobenzaldehyde (82°C, 1 mol% **2**, 24h: 24% yield)



**Figure S40.** <sup>1</sup>H NMR spectrum of the transfer hydrogenation of 4-methylcyclohexanone (82°C, 1 mol% **2**, 1h: 63% yield)



Figure S41. GC trace of the upgrading of ethanol and methanol to isobutanol (180°C, 0.1 mol% trans-[Ru(Cl)<sub>2</sub>(dppm)<sub>2</sub>], 2h: 64.6% yield). This catalytic sample was analysed using a different method to the other samples: Method: oven temperature starts at 35 °C for 3.5 minutes, heat to 200 °C at 20 °C min<sup>-1</sup> then to 250 °C at 50 °C min<sup>-1</sup> then hold at 250 °C for 5 minutes. Flow rate 1.8 cm<sup>3</sup> min<sup>-1</sup>. *n*-Pentanol was used as a standard



**Figure S42.** GC trace of the upgrading of ethanol and methanol to isobutanol (180°C, 0.1 mol% **2**, 2h: 38.1% yield). Hexadecane was used as a standard.



**Figure S43.** GC trace of the upgrading of ethanol and methanol to isobutanol (180°C, 0.1 mol% **9**, 2h: 11.1% yield). Hexadecane was used as a standard.

## **Reactivity studies**

### Reaction of 1 with $[{RuCl_2(C_6Me_6)}_2]$ and dried NH<sub>4</sub>PF<sub>6</sub>

Under a nitrogen atmosphere, a Schlenk flask was charged with **1** (20 mg, 0.06 mmol, 1 equiv.), [{RuCl<sub>2</sub>( $C_6Me_6$ )}<sub>2</sub>] (18 mg, 0.03 mmol, 0.5 equiv) and NH<sub>4</sub>PF<sub>6</sub> (9 mg, 0.06 mmol, 1 equiv.). Dry dichloromethane (2 cm<sup>3</sup>) was then added *via* syringe and the reaction stirred for two hours. All volatiles were then removed *in vacuo* before dry CDCl<sub>3</sub> (0.8 cm<sup>3</sup>) was added. The crude reaction mixture was then analysed by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy.



**Figure S44.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the reaction of 1 with  $[{RuCl_2(C_6Me_6)}_2]$  and dry NH<sub>4</sub>PF<sub>6</sub>



**Figure S45.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the reaction of 1 with [{RuCl<sub>2</sub>( $C_6Me_6$ )}<sub>2</sub>] and dry NH<sub>4</sub>PF<sub>6</sub> (magnification of low frequency area). \* = **9** 

### Reaction of 1 with $[{RuCl_2(C_6Me_6)}_2]$ without any additional anions

An NMR tube was charged with **1** (20 mg, 0.06 mmol) and  $[{RuCl_2(C_6Me_6)}_2]$  (18 mg, 0.03 mmol, 0.5 equiv), then an approx. 1:1 mixture of  $C_6D_6$ : fluorobenzene (used to aid solubility of the Ru dimer) was added and the tube sealed with a J Young tap. The tube was heated to 90°C overnight and the contents analysed by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy, which revealed formation of **2** as the major product.



Figure S47. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the reaction of **1** with [{RuCl<sub>2</sub>(C<sub>6</sub>Me<sub>6</sub>)}<sub>2</sub>] (magnification of high frequency area). \* = **2** 





#### Reaction of 10 with water

An NMR tube was charged with a solution of **10** (20 mg, 0.03 mmol) in dry THF-d<sub>8</sub> (0.6 cm<sup>3</sup>). Water (3 drops) was then added and the tube was then sealed with a J Young tap and thorough shaken. After an hour, the reaction was analysed by  ${}^{31}P{}^{1}H$  NMR which revealed formation of mainly **11** as well as minor side products and unconsumed **10**.



Figure S49. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the reaction of 10 with excess water



Figure S50. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the reaction of **10** with excess water (magnification of low frequency region). \* = **11**